ED 038 034

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

AT RRTE T R T T T T e e R R T T T g T s e e e e o

DOCUMENT RESUHE

EM 007 932

Feurzeig, W.:; 2nd Others

Programming-Lanrguages as a Conceptual Framework for
Teaching Mathematics. Final Peport on the First
Fifteen Months of the LOGO Project.

Bolt Beranek and Newman, Inc., Cambridge, HMass.
National Science Foundation, Washington, D.C.

R- 1889

30 ¥ov 69

32Sp.

EDRS Price MF-$1.25 HC-$1€.55

*Computer Assisted Instruction, Educational
Research, Instructioral Technology, *Mathematics
Instruction, Program Evaluation, Programing,
*Programing Languages

LOGO

A new mathematics curriculum was used in this study

which depended fundamentally on the use of computers and programing
for presentation. The main part of the research was done with seventh
grade children utilizing a programing language, LOGO, specifically
designed for the teacking of mathematics. An investigation was also
conducted with a group of second and third graders. After a brief
expositior of the LOGO language, the two teaching activities are
described in some detail, including many examples of the classroon
and laboratory materials used. The report begins witnh a discussion of
the reasons that mathematics instruction is so difficult, and states
the underlying issues that have dictated the kind of approach taken
here., Following the descriptive material on the teaching experiments
is a discussion of *+he results, including some evaluation of the
year's work and of the project. A detailed description of the LGCGO
programing language and system is appended. {(Author/Jy)

;p{‘ BOLT BERANEK AND NEWMAN nc

C ONSULTI NG - D EV ELOPMENT « RESEARTCH

Report No. 1889 30 November 1969

3 - -

| PROGRAMMING-LANGUAGES AS A CONCEPTUAL
p FRAMEWORK FOR TEACHING MATHEMATICS

ED0 38034

Feurzeig
Papert
Bloom
. Grant
Solomon

OV OnNXE

@

G Submitted to:

— | National Science Foundation

<) Office of Computing Activities
1800 G Street, NW

@) Washington, D. C. 20550

Vi

wam e P 1P-i‘

-
b
1

|

CAMBRIDGE NEW YORK CHICAGO LOS ANGELES

ED0 38034

U.5. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF ViEw OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY.

Programming-Languages as a Conceptual

Framework for Teaching Mathematics

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

Feurzeig
Papert
Bloom
Grant
Solomon

OO0

Final Report on the first fifteen
months of the LOGO Project

30 November 1969

Submitted to:

National Science Foundation
Office of Computing Activities
1800 G Street, NW

Washington, D. C. 20550

Contract NSF-C 558

Rey »rt No. 1889 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Page
1. Foreword .« .« & v v ¢ o 6 6 e e e e e e e e e e e 1
2. The Research Problem . . . « v v v ¢ v v o o o o 3

2.1 The Contribution of LOGO .+ + ¢ ¢« v o « o« « « o o o 7
2.2 Introduction to the LOGO Language . « « « « « « « . 16

2.3 The Project « .« v v v v ¢ v & o o o o« o « o o« o « . 28

3. Elementary Teaching Investigation 30
3.1 OVerview « « ¢« & v v o & & o ¢« o o o o o o e o+ o 31
3.2 The Children's Work . . « « v « ¢ &« o« « o « o« « « o 34
3.3 The Lesson Materials . ¢« ¢ v v v ¢ o o « o« o o« « « 067
3.4 The GamesS « « v o « « o« o o o o o« o o o o« « « « « o 111
4, Junior High School Teaching Experiment 124
h.1 Design and Operation of the Course 124
4,2 LOGO Teaching Materials e e e e e e e e e e . . 126

Course Outline . . « v v o « « « « « o« « « o« « . 126
Formal Elements « « « v ¢ o o o o« o o o o o« « « . 128
Heuristic Work .+ « « v ¢« & « « o « o o« « « « « « 143
Early Projects .« ¢ ¢« ¢ ¢ ¢ « o ¢« ¢« o « o« « o« « « 159
b, 3 Algebra Materials . . ¢ « o ¢ « « o o o o o o o« o« W ATT
Sequences and Oscillators . . .« « « « ¢« « « « « « 178
Guessing and Strategy . « ¢« ¢ « ¢ « ¢« « ¢« ¢« o« o« o 193
Arithmetic Operations . . « « ¢« « ¢« « « « « « « » 215

Algebra Teaching Sequence . . . « « « +« +« « « + o 225

Full Tt Provided by ERIC.

Report No. 1889 Bolt Beranek and Newman Inc.

4

TABLE OF CONTENTS (continued)

b,y Evaluation
Achievement Test Results
Student Performance-Level Changes
Comments of Evaluators

Conclusions of Project Staff

Appendix: A Description of the LOGO Language and System

1. The LOGO Language
2. The LOGO System . + « ¢« ¢« v v v v + o « .

3. Summary of LOGO Operations, Commands, Special
Names, and Abbreviations

ii

Page
249
249
256
259
271

274
306

322

Report No. 1889 Bolt Beranek and Newman Inc.

1. Foreword

This is a report of research and teaching directed toward the
development of a new mathematics curriculum whose presentation
depends fundamentally on the use of computers and programming.
The work was centered mainly on a mathematics teaching experiment
with seventh grade children utilizing a programming language,
LOGO, specifically designed for the teaching of mathematics.

We also conducted an investigation of the use of LOGO in teach-

ing much younger children -- a group of second and third graders.

After a brief exposition of the LOGO language, the two teaching
activities are described in some detail, including many examples
of the classroom and laboratory materials used. The report
begins with a discussion of the reasons why the learning and
teaching of mathematics are so difficult, and states the under-
lying issues that have dictated the kind of approach undertaken
here. Following the descriptive material on the teaching experi-
ments is a discussion of the results including some evaluations
of the year's work and of the project. A detailed description

of the LOGO programming language and system is appended.

The seventh grade class was taught by Mrs. Marjorie Bloom from
September 1968 through December 1968, and jointly by Miss Cynthia
Solomon and Dr. Seymour Papert from January 1969 through June
1969. Dr. Papert, Professor of Applied Mathematics at Massachu-
setts Institute of Technology, was a consultant to Bolt Beranek
and Newman on this project. During the latter period, Mrs. Bloom
taught the group of second and third grade children.

We did not begin the teaching with a large body of previously
developed classroom materials. These had to be created

Report No. 1889 Bolt Beranek and Newman Inc.

concurrently with the teaching as the courses progressed. The
dynamic aspects of this day-to-day work helped assure that the
content and presentation were adapted to the current needs of
the children and were responsive to thelr difficulties, some of
which we had not anticipated. The dedication, resources, and
hard work shown by Mrs. Bloom, Miss Solomon, and Dr. Papert in
responding to these challenges were exceptional.

The original research leading to the design of LOGO was supported
by the U. S. Office of Naval Research. Dr. Papert, Dr. Daniel G.
Bobrow, and Wallace Feurzelg designed the original version of

the language. LOGO was first implemented by Dr. Bobrow and in

an extended version by Richard Grant and Frank Frazier. The

work of programming and maintaining the LOGO system for use in
this project was initiated by Mr. Charles R. Morgan, now

Chairman of the Department of Mathematics, Gordon College, Wenham,
Mass., and was continued by Mr. Grant who also contribuf~d to

the design of the system as i1t evolved through- L. year.,

Mr. Feurzelg coordinated the research design anc implementation.
The philosophical and pedagogical point of view adapted for the

project was largely due to Dr. Papert. Miss Solomon contributed
to the development and use of the language.

The work of installing and maintaining the computer ferminals
in the schools was done by Mr. Paul Wexelblat. Mr. Wexelblat
and Mr. Grant were co-teachers of the computer club, an
auxiliary activity at the junior high school.

Report No. 1889 Bolt Beranek and Newman Inc.

The Muzzey Junior High School administration, particularly

Mr. Santo Marino, Principal, and Mr. David Terry, Assistant
Principal, were especially cooperative in providing a congenial
classroom site for the project. Similarly, the Emerson School,
particularly Mr. Donald Welch, Principal, provided a cordial base
for the elementary teaching investigation.

This report was prepared by Mr. Feurzeig. Mr. Grant contributed
to the writing and editing. Mrs. Frieda Ployer provided valuable
critical review. Formatting, drawing, and final typing were done
by Miss Pearl Stockwell.

2. The Research Problem

There 1s an old saying among mathematicians that there is no
known theorem which cannot be made transparently clear to a high
school student of average intelligence in a reasonable period of
time (hours or months, not lifetimes). Yet few high school
students acquire an understanding of even the simplest theorems
and, for most students, the formal methods of mathematics remain
forever mysterious, artificial, poorly motivated, and very
obscurely related to intuitive thinking.

The relation of school children to mathematics remains deeply
puzzling after more tran a decade of wide-scale experiment in
the classroom and in the cognitive laboratory. The extent of
the puzzle 1s often obscured by popular prejudices about mathe-
matics and about children. For 1f one asks: "why cannot every
child learn algebra in a week?" the answer is likely to be
influenced by glib thoughts llke "math is difficult" and

"no one learns that fast." But the question i1s a serious one

itepcrt No. 1889 Bolt Beranek and Newman Inc.

and requires us to ask: wherein is mathematics difficult? What
rational analysis convinces us there is that much to learn? Some
things can be learned in ten minutes; why do children need so
very long to understand equations or the manipulation of negative
numbers?

Failure to obtain quick learning in classrooms is not in itself
an indication of the quantity or difficulty of what has to be
learned. It can be an indication that the teaching method is
inadequate. In fact, the guiding thought of the following pages
is the conjecture that current teaching does not even attempt to
identify and teach those skills, concepts, and facts most needed
by the child. This applies as much, sometimes more so, to most
of the trends called "lew Math" as to really traditional mathe-
matics teaching.

To emphasize the sharpness of the position developed below, the
following analogy may be useful. Most schools teach singing in
a way that shows the Grant phenomenon: children are given the
instruction "sing!" - those who can, do, those who cannot, become
listeners. An observer watching the class over the whole year
would see a great deal of teaching: the children who know how
to sing learn new songs, new tunes, even new techniques of sing-
ing. But, all this teaching presupposes that the really
important learning has taken place elsewhere.

Does this picture apply to our mathematics teaching? Do we give
children the instruction "thirnk!" without even telling them hZow
to think. Does it all consist of teacning delightful mathemati-
cal songs to those who are lucky enough to have picked up the
skill of mathematical thinking?

L S

Report No. 1889 Bolt Beranek and Newman Inc.

These questions open a theoretical dispute about which very sharp
views are held. Can one tell children how to think? Some people
believe very strongly that one certainly cannot, indeed that one
cannot even tell them how to do arithmetic. For example,

R. Davis,* one of the most serious innovators of active and
creative kinds of mathematical activity for children, says:

There is another reasou for using "discovery": in point
of fact you usually cannot "tell" the student what to do.
You and he do not share a sufficiently precise meta-
language.

Insofar as he is describing the status quo, Davis is certainly
right. Occupants of present-day mathematics classrooms do indeed
lack a "sufficiently precise meta-language". Students are
accustomed to using language and logic in the context of a
sympathetic listener who makes reasonable interpretations of
their statements, and is tolerant of the gaps in thelr arguments.
The formal mode of thinking imposed in the mathematics class
seems arbitrary and unreasonable to them.

The low degree of mathematical articulation - amongst teachers
as much as children - is at least partly the result of the
following factors:

(a) The complete absence of a standard teachable terminology

to discuss the heuristic aspects of mathematical activity con-
cerned with the art of solving problems. 1In fact, these aspects
(as opposed to formal ones) are scarcely recognized by official
mathematics as worthy of study and teaching.t

¥Davis, Robert B., The Madison Project's Approach to a Theory of
Instruction, Journal of Research in Science Teaching, Vol. II,
pp. 1lU6-162, 1964,

tFor further elaboration of this concept see the well-known works
of Polya. See also Minsky, M. L., Semantie Information Process-
ing, M.I.T. Press, 1969.

-5m

&

Report No. 1889 Bolt Beranek and Newman Inc.

(b) In particular the relation of formal detail to global plan-
ning in working a problem is not clearly made in any standard
treatment of elementary mathematics. Formal rigor is seldom
properly understood by teachers as a working tool (rather than a

fund of intellectual ritual).

(c) The traditional curriculum content is poor in that it seldom
provides many examples of the same phenomenon. As a result,

children are not familiar from experience with such basic process-
es as generalizing a method, extending the domain of an operation,

and so on.

(d) As a consequence of the previous point, the possibilities of
"discovery" are greatly impoverished - the child who did not make,
but did understand, any particular discovery has little chance of

using his understanding to try his hand at a related problem.

Indeed, we might summarize all these points by saying that school
children have been deprived of the opportunity of actually doing
mathematics in any sense even thinly related to the working
activity of mathematicians. Thus, it is not surprising that
children resist, that they seldom carry over their training in
formal manipulation into less formal situations, and that they

so often slip back into loose and uncontrolled thinking when
faced with problems such as "word problems" in algebra that do

not have obvious mechanical solutions.

To remedy, or even to study, this situation, one would like to
find areas of mathematical work in which students would impose

the neéd for precise articulation on themselves. We believe that

such areas can be created by appropriate instruction in the use

a2+ . R G T T e e Em AT el et o

Report No. 1889 Bolt Beranek and Newman Inc.

¢f computers and programming languages. The purpose of this
research has been to investigate the teaching of mathematics in
terms . of a "sufficiently precise meta~-language," the programming
language LOGO, and to explore means of using it as the foundation
and framework for a mathematics curriculum.

2.1 The Contribution of LOGO

Appropriate teaching with a suitable programming language can

contribute to mathematics education in several ways.

(1) Programming facilitates the acquisition of rigorous thinking
and expression. Children impose the need for precise statement
on themselves through attempting to make the computer understand
and perform their algorithms.

(2) Programming can be used to give students very specific in-
sights into a number of key concepts. TIdeas such as variable
and function remain, to say the least, obscure for many high

school students. Indeed, college students often have trouble
with the many roles of the "x" in algebra: sometimes it appears
to be a number, sometimes a subtly different kind of object
called a variable, and on other occasions it is to be treated as
a funetion. We contend that the difficulty stems less from the
intrinsic intellectual subtlety or complexity of these distinc-
tions than from their ethereal relation to anything in the real
and familiar world. Moreover, it is possible to fumble one's
way through an algebra course without ever facing these issues
squarely. In programming, the distinctions arise concretely;
they must be faced; and the physical nature of the machine pro-
vides a more earthy reference than can any abstract work. These

Report No. 1889 Bolt Beranek and Newman Inc.

ideas should be easier in this context and our experience is

that they are.

(3) Programming provides highly motivated models for all the

principal heuristic concepts, for example:

It lends 1itself perfectly to discussion of the relation of
formal procedures to intuitive understanding of problems.

It provides a wealth of examples for heuristic precepts such
as "formulate a plan'", "separate the difficulties", "find a

related problem", etc. Thus, it provides a natural context

to concretize the approach to teaching associated with the

name of George Polya.

It provides a sense of completely formal methods and what
their purpose is. It gives the child a chance to learn to
distinguish situations where complete formal rigor is

necessary from those where looser thinking is appropriate.

In particular, it provides models for the contrast between

the global planning of. an attack on a problem and the formal

detail of an elaborated solution. In the context of program-

ming, the concept of sub-problem or sub-goal emerges crisply.

It is at least highly plausible that pupils who have acquired .

very early the habit of organizing their approach to a mathe-

| —]

matical problem will be better able to develop systematic
habits of thought in the more murky areas of problem-solving

they will have to meet later, in school and elsewhere.

The concrete form of the program and the interactive aspect
of the machine allow "debugging" of errors to be identified

as a definite, constructive, and plannable activity. The

}

Report No. 1889 Bolt Beranek and Newman Inc.

programming concept of a '"bug" as a definite, concrete,
exlstent entity to be hunted, caught, and tamed or killed
is a valuable heuristic idea.

(4) By enlarging the scope of applications, it allows every
problem to be embedded in a large population of related problems
of all degrees of difficulty, for example:

Through programming, mathematical induction can be presented
and generalized by its relation to recursion. An example of
this kind of presentation is shown in Section 2.2. The

examples given in Section 4.3 show how we have learned to
present recursion itself as related to the general heuristics
of planning.

The extension of an operation to a larger domain becomes an
everyday activity. The newer mathematics texts do emphasize
the extension of addition, for example, to successively more
general kinds of numbers (integers -+ rationals =+ reals).

But the phenomenon is obscured for children by its isolation
and by the fact that children already know how to add real
numbers.

Generalizing this, generalization becomes an activity under-
taken routinely by the children.

Functions become familiar things one invents oneself to b
serve real purposes. We have seen children invent as many

new functions in a week as they would otherwise learn (by

rote!) in their whole career. More importantly, they use

these functions as bullding blocks for constructing more

complex functions which often are elements of still larger

Report No. 1889 Bolt Beranek and ilewman Inc.

constructs -- very much in the way mathematicians use propo-
sitions to prove theorems and use these theorems to prove

more complex theorems.

(5) The use of computers and programming languages is also
relevant to what is perhaps the most difficult aspect of mathe-
matics for a teacher: helping the student strive for self-
consciousness and literacy about the process of solving problems.
High school students can seldom say anything about how they
worked towards the solution of a problem. They lack the habit
of discussing such things and they lack the language necessary
to do so. A programming language provides a vocabulary and a
set of experiences for discussing mathematical concepts and
problems. Programs are more discussable than traditional mathe-
matical activities: one can talk about their structure, one can
talk about their development, their relation to one another, and

to the original problen.

(6) A related point is that the computer can be used as a
mathematical laboratory to foster an experimental approach toward
solving problems. Programming could, in principle, be taught as
an abstract mathewratical topic without using or, indeed, even
mentioning computers. Presented in that spirit, the material
would retain some of the pedagogical virtues that motivate our
interest in 1t. But an essential aspect would be lost. The use
of a computer has the major merit of turning a programming lan-
guage into an active instrument to control an outside reality.
The most immediate effect of using a computer is that explicit
and precise statement is no longer imposed by the arbitrary edict
of a teacher but by the obvious necessities of makins the computer

do one's bidding. Since students learn to write programs by

-10-

Report No. 1889 Bolt Beranek and Newman Inc.

experience and experiment, it is appropriate to use the term
mathematical laboratory for the practical phases of the instruc-
tion.

The reason that a laboratory is not traditionally used in mathe-
matical study is not that it would be less valuable there than
in biology, chemistry, or physics; rather, the idea of a mathe-
matical experiment was, until recently, unrealizable, and barely
conceivable, except in very special or superficial senses. How
could a person set in motion a sequence of mathematical events
or a mathematical process, and then see its effects unfold?
Using a computer with an appropriate programming language adds
this extra dimension to mathematical experience; the important
contribution of the computer is a new and powerful operational

universe for mathematical experiments.

(7) Finally, the richness of non-numerical examples open to
programming can be exploited to enlarge the cultural base of the
mathematics course by bringing it into contact with physical and
biological science, language study, geography, economics, and
other subjects.

Thus, our interest is not to teach programming as an auxiliary
topic, but to explore means of using it as a foundation for an
integrated course in mathematics. This concept of programming

is distinct from the already familiar and valuable ones of teach-
ing computer programming as a practical skill in its own right

or for use in special courses in numerical applications, applied
mathematics, computational methods, and the like.

Report No. 1889 Bolt Beranek and Newman Inc.

In almost alil educational uses of programming languages to date,
the particular languages employed were not originally designed
for teaching. Most of the languages used, including FORTRAN,
APL, and JOSS (which has many dialects such as TELCOMP, CAL, and
PILL), were originally designed for computational applications
in mathematics, science, and engineering. Some of these were
subsequently modified, usually in minor ways, to adapt them for
use in teaching. A few languages, notably BASIC, were designed
for teaching programming as a skill, and for providing students
with experience in its use as a "problem-solving" tool. Educa-
tionally beneficial applications of many kinds have been made
through such use of these languages.

We now present the considerations that led us to create the
programming language LOGO. The introducticn of yet another
language clearly deserves critical examination, particularly
since several existing languages appear to be suitable for teach-
ing mathematics. The JOSS languages, for example, have been
described as exceptionally well-suited for use in mathematical
work: 1t has been pointed out that "all that one needs to know
to start writing JOSS programs, almost instantly with very little
preparation, 1s algebra." That observation is well-taken but it
points up the problem: most students leave school without having
learned algebra -- it is precisely for the purpose of teaching
mathematics, rather than assuming that children already know it,
that we want to use a programming language. (We do not want to
tell them "Sing!" before we teach them how.)

It might reasonably be argued that this difficulty is only
apparent and that existing languages could be used to teach
arithmetic and algebra. Indeed, starting with this objective

-12-

Report No. 1889 Bolt Beranek and Newman Inc.

and the requisite point of view, one could consider using JOSS
or BASIC as a foundation and framework for mathematics. But it

would not be easy -- these languages were not designed to teach
the most elementary (and often the most difficult) concepts and
skills, and constructive methods of extending them.

For these purposes, existing languages usually have too much
mathematical machinery built in: to use JOSS and most of the
others normally requires a knowledge of decimal notation and
scientific representation (floating point numbers, exponential
numbers) and some familiarity with the use of arithmetic expres-

slons. At the same time, most of these languages are not well-
suited for expressing formal or non-numerical procedures.

These, however, are negative considerations. More to the point
are the positive reasons which motivated us. Earlier experiences
with the use of programming in elementary and secondary mathe-
matics teaching convinced us of the need for a language, i.e.,
LOGO, with the following characteristics.

e S

(1) It should be accessible to young children and others
who have not acquired the elements of mathematical thinking.
The only prerequisites for using it should be an acquaint-
ance with the counting numbers and the ability to read at
about second-grade level.

(2) It should be transparently direct, natural-seeming, and
easy to use for expressing procedures for simple tasks like
many non-numerical problems already familiar to children.

To meet these two requirements, the language should be without
difficult technical features like those found in traditional
programming languages (e.g., loops, counters, array declarations,
multiple mode arithmetic, etec.).

-13-

Report No. 1889 Bolt Beranek and Newman Inc.

(3) It should be organized to facilitate the extension and
generalization of simple mathematical algorithms to more
advanced and powerful ones. For example, the most primitive
numerical operations in LOGO are centered on integer arithrme-
tic and can only be used for counting or for adding and sub-
tracting integers. But students can write LOZ0O procedures
for expanding these arithmetic operations into mathematically
rich and advanced algorithme in arithmetic, algebra, and
higher mathematics with appropriate ease.

(4) The structure of the language should embody mathematically
important concepts and foster the development of a constructive
point of view about mathematical work.

Solving a mathematical problem is a process of construction. The
activity of programming a computer is uniquely well suited to
transmitting this idea. The image we would like to convey could,
roughly speaking, be described thus: A solution to a problem is
to be built according to a preconceived, but modifiable, plan,
out of parts which might also be used in building other solutions
to the same or other problems. A partial, or incorrect, solution
is a useful object; it can be extended or fixed, and then incor-
porated into a large structure. This image is mirrored in the
activity of writing LOGO programs. Using procedures as building
blocks for other procedures is standard and natural in LOGO pro-
gramming. The use of functionally separable and nameable proce-
dures composed of functionally separable and nameable parts,
coupled with the use of recursion, makes the development of
constructive mathematical methods meaningful and teachable.

Students construct LCOGO procedures from the very beginning, as

they are introduced to the language. They start with non-numerical

ERIC

Report No. 1889 Bolt Beranek and Newman Inc.

procedures with which they are all familiar. Good examples are
translating English into Pig Latin, making and breaking secret
codes (e.g., substitution ciphers), a variety of word games
(finding words contained in words, writing words backwards, etc.),
question-answering and guessing games (Twenty Questions,

Buzz, etc.). There are many problems of this sort which chil-
dren already know and like. The student thinks at first that he
understands such problems perfectly because, with a little prod-
ding, he can give a loose verbal description of his procedure.
But he finds it difficult to make this description precise and
general partly for lack of formal habits and partly for lack of

a suitably expressive language. The initial value of using LOGO
becomes apparent when the student attempts to make the computer
perform his procedure. At this point the process of transforming

loose verbal descriptions into precise formal ones becomes possible

and, in this context, seems natural and enjoyable to children.

An understanding, or even a clear appreciation, of these points
1s impossible without a brief introduction to the LOGO language.
The presentation that follows is not a complete description of
LOGO. TIts purpose is merely to give a sense of the spirit and
structure of LOGO programming. Some pedagogically important
operations and commands are not even included here, for example,
the REQUEST operation which makes possible the writing of inter-
active procedures. These are introduced in the body of the
report along with the features of the LOGO system having to do
with editing, correcting program errors, and filing programs for
subsequent retrieval. A comprehensive description of the LOGO

language and system is included as an appendix to the report.

Full Tt Provided by ERIC.

i]:C

Report No. 1889 Bolt Beranek and Newman Inc.

2.2 Introduction to the LOGO Language

LOGO is a language for expressing formal procedures. LOGO pro-
cedures are written along lines similar to recipes in cooking.

A procedure, like a recipe to bake a cake, has a name; it usually
has ingredients, maybe several, but maybe none (these are called
its inputs); and it has a sequence of instructions telling how

to operate upon its inputs (and upon the things made from them
along the way) to produce the desired effect or to make a new
thing (this is called its output).

To i1llustrate, we define a procedure for doubling a number. We
begin by choosing a word for the name of the procedure - let's
choose the word DOUBLE in this case. Next we choose names for
the 1nputs - in this case there is a single input, which we'll
call NUMBER. So, the title of the procedure is

TO DOUBLE /NUMBER/

(like to boil an egg). Note the slash marks around NUMBER --
slashes are used to demarcate names of things; names for proce-
dures like DOUBLE and for already-built-in LOGO instructions are
written without any marks around them.

When we give LOGO the command DOUBLE 5 we want the teletype to
respond 1@; when we say DOUBLE 9999 we want the response 19998,
S0 now we proscribe the instructions for performing this. One
instruction suffices:

PRINT SUM OF /NUMBER/ AND /NUMBER/.

This instruction 1s composed of two elementary (l.e., originally
built-in) instructions -- PRINT and SUM.

PRINT 1s a command which needs one input (thils can be any LOGO
thing - a number or some other alphanumeric word or a sentence

-16-

Report No. 1889 Bolt Beranek and Newman Inc.

comprising several words). Its effect is to cause the teletype
to print its input. Thus, PRINT 752 causes the teletype to print
7523 PRINT "GOOD MORNING" causes the teletype to print GOOD
MORNING. (Quotation marks are used to indicate LOGO things that
stand for themselves. Since integers always stand for themselves
in LOGO, they do not need to be quoted.)

SUM 1s an operation which needs two inputs (these must be
integers). Its output is their sum. Thus, SUM OF 3 AND 2 has
the output 5. The LOGO instruction:

PRINT SUM OF 3 AND 2

causes the teletype to print the LOGO thing which is the output
of SUM OF 3 AND 2, i.e., 5.

The entire procedure definition 1is:

TO DOUBLE /NUMBER/

1 PRINT SUM OF /NUMBER/ AND /NUMBER/

END

where the integer 1 is used to label the instruction line (in
this case there is only one line, but procedures often have
several lines of instructions), and END marks the end c¢f the
definition. When this completed definition is typed in, LOGO
acknowledges by responding: DOUBLE DEFINED. From that point on,
the procedure DOUBLE can be used as if it had always been part of
LOGO, just 1like PRINT and SUM. The new procedure 1s used by

typing:

DOUBLE 2 (We underscore the

The machine responds with the answer student's or teacher's
© © P typing in these and the

4 following examples to

DOUBLE U distingulsh them from

» LOGO's responses.)

-17-

Report No. 1889 Bolt Beranek and Newmarn Inc. W
Of course, rather than write a procedure for something as simple !
as DOUBLE, we can accomplish the same thing merely by writing: .

PRINT SUM OF 2 AND 2 or §
PRINT SUM OF 4 AND 4, etc. E
Using the procedure requires less writing however, and we might :
want to use it a great deal. | {

But, if we want to use 1t in a compound instruction chain like:
DOUBLE DOUBLE 4

where we expect the result to be 16, DOUBLE will not work

properly: 1t will print 8 and then it will print an error

message. The difficulty is that DOUBLE, as written, does not

provide 1ts result as an output to another procedure; it merely

prints its result out on the teletype. Procedures (and built-in '
instructions) that have an output are called operations to

distinguish them from commands which have no output. We can

change DOUBLE to a procedure that defines an operation, as
follows.

TO DOUBLE /NUMBER

1 OUTPUT SUM OF /NUMBER/ AND /NUMBER/

END

Here, the elementary command OUTPUT is used in place of PRINT.

To use this new DOUBLE operation we write, with an external
PRINT command,

PRINT DOUBLE OF 2

4
PRINT DOUBLE OF 4

8
PRINT DOUBLE OF (DOUBLE OF 4)

16

etc.

-18~

Report No. 1889 Bolt Beranek and Newman Inc.

The use of parentheses is optional. In the last example DOUBLE
OF U4 produces the output & for use as the input to the first-
written DOUBLE, whose output is therefore 16.

There are a relatively small number of elementary operations and
commands in LOGO. An operation which is analogous to the opera-
tion SUM for integers is the operation WORD for alphanumeric words.
Thus, PRINT WORD OF "SUN" AND "ABC" will cause the LOGO word
SUNABC to be printed. PRINT WORD OF WORD OF "AB" AND "123" AND
"GO" will cause the word AB123GO to be printed. A procedure

defining an operation on words, analogous to DOUBLE on numbers,
can be written as follows:

TO DUBBLE /WD/

1 OUTPUT WORD OF /WD/ AND /WD/
END

DUBBLE DEFINED (LOGO acknowledges)

PRINT DUBBLE OF "GO"

GOGO

PRINT DUBBLE OF DUBBLE OF "LA"
LALALALA

etc.

Two operations closely related to SUM and WORD are DIFFERENCE
(or its abbreviation DIFF) and SENTENCE. Their use 1s illustrated

by:

PRINT DIFF OF 3 AND 1

2

PRINT DIFF OF 1 AND 3

-2

PRINT SENTENCE OF "SUN" AND "STARS"
SUN STARS

-19-

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT SENTENCE OF "THIS IS" AND "GOOD"
THIS IS GOOD

The operations SUM and WORD are used to put things together.
There also are LOGO operations of the opposite kind, for extract-
ing components of things. Four such operations FIRST, LAST,
BUTFIRST, and BUTLAST work as follows:

PRINT FIRST OF "BOX"

g T T R A T T T R T e T
& 1

B

PRINT LAST OF "BOX"

X

PRINT BUTFIRST OF "BOX"

OX

PRINT BUTLAST OF "BOX"

BO

PRINT BUTFIRST OF "I LIXE YOU"
LIKE YOU

PRINT BUTLAST OF "I LIKE YOU"
I LIKE

PRINT BUTFIRST OF BUTLAST OF "ABCD"
BC

Note that BUTFIRST means all but the first letter of the word
(or word of a sentence) and BUTLAST means all but the last letter

(or word), and that these are operations, thus they can be

chained together.

Some elementary LOGO operations have no inputs. Examples are
CLOCK and RANDOM. The use of these is illustrated by:

PRINT CLOCK

123

PRINT CLOCK

125

~20-

Report No. 1889 Bolt Beranek and Newman Inc.

Here we see that 123 seconds had elapsed between the time the
student started working and the time that the first of the two
PRINT commands was performed, and that 2 seconds more elapsed
before the second PRINT was performed.

PRINT RANDOM

7
PRINT RANDOM
4

RANDOM has as its output a single digit number chosen

randomly from a uniform distribution. To make a two digit
random number we write:

PRINT WORD OF RANDOM AND RANDOM
36

Two basic acts in procedures are making new LOGO things and
testing them to see whether they satisfy some condition, such as
a stop rule. To tell LOGO that we want to make a new LOGO thing,
we type the command MAKE. LOGO responds by asking us first for
the name we want to give the new thing and then for the thing we
want to make, i.e., for a LOGO expression for the new thing.
Thus, if we want to make a sentence named "GOODIES" out of some
words for foods we like, we can write:
MAKE

NAME: "GOODIES"

THING: "APPLES BUNS CAKES PIES"
If we then type
PRINT THING OF "GOODIES", LOGO responds
APPLES BUNS CAKES PIES
(If we had typed instead PRINT "GOODIES", LOGO would have
responded GOODIES.)

=21

i
|
|
|
[
\
L
|
|

Report No. 1889 Bolt Beranek and Newman Inc.

A shorthand way of writing THING OF (to indicate that we mean
the thing being named rather than the name) is by using slashes
instead of quotation marks. Thus,

PRINT /GOODIES/

means the same as PRINT THING OF "GOODIES" and so produces the
same response,

APPLES BUNS CAKES PIES. Similarly,

PRINT FIRST OF BUTFIRST OF /GOODIES/

causes LOGO to print

BUNS.

To test whether or not a LOGO thing satisfies a specified condition,

we introduce the concept of predicate, 1.e., an operation whose

possible outputs are "TRUE" and "FALSE". The identity operation

IS is one of the elementary LOGO predicates. IS takes two inputs

and has the output "TRUE", if these inputs are the same, and the

output "FALSE", if they are different. Thus,

PRINT IS 2 SUM OF 1 AND 1

TRUE

PRINT IS 2 1

FALSE |

Other elementary predicates include GREATERP, NUMBERP, and WORDP.

PRINT GREATERP OF 2 AND 1

TRUE (because 2 is greater than 1)
PRINT GREATERP OF 1 AND 2

FALSE (because 1 is not greater than 2)
PRINT NUMBERP OF "ONE"

FALSE (because "ONE" is not a number)
PRINT NUMBERP OF 1

TRUE (because 1 is a number)

~D02-

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT WORDP OF "ONE"

TRUE (because "ONE" is a word)
PRINT WORDP OF "THIS WORD"
FALSE (because "THIS WORD" is a sentence, not a word)

The command TEST, along with its associated commands IF TRUE and
IF FALSE, is used with a predicate as in the following examples.

TEST IS 2 2
IF TRUE PRINT "GOOD"
causes the machine to print GOOD. On the other hand, when the

instructions

TEST IS 2 2

IF FALSE PRINT "BAD"

are performed, nothing will be printed.

The use of the commands MAKE and TEST is illustrated in the
following procedures for printing random numbers.

TO NUMBER

1 PRINT RANDOM

END

This procedure is used by typing:
NUMBER
The machine responds with a number

8
NUMBER

5
ete.

The repetitive act of typing NUMBER is easily mechanized by
writing a new procedure to do just this, i.e.,

-23-

1

Report No. 1889 Bolt Beranek and Newman Inc.

TO SPEW
1 NUMBER
2 SPEW
END

We have incorporated into SPEW the instruction to perform another
procedure, NUMBER, and then the instruction to SPEW, i.e., to do
the same again. So when we type SPEW. we obtain an endless
sequence of numbers:

SFEW

S —————

7

3
2
9

As well as using another procedure, NUMBER,‘SPEW also uses itself
~— it is a simple example of a recursively defined procedure.

To modify SPEW so as to produce a definite number of random
cigits, we introduce a new actor on the problem scene: the
number of times we still have to SPEW. We name this actor
"TIMES" and write:

TO SPEW /TIMES/
1 TEST IS /TIMES/ @
2 IF TRUE STOP
3 PRINT RANDOM
L MAKE
NAME: "NEWTIMES"
THING: DIFFERENCE OF /TIMES/ AND 1

5 SPEW /NEWTIMES/
END

—24-

Report No. 1889 Bolt Beranek and Newman Inc.

The use of this new SPEW procedure is illustrated by:

SPEW 4
2

A similar non-numerical recursive procedure, TRIANGLE, was
invented by a child. It is defined as follows:
TO TRIANGLE /WORD/

1l TEST IS /WORD/ /EMPTY/ (/EMPTY/ denotes the empty thing
in LOGO, i.e., the word with no
letters)

e

2 IF TRUE STOP
3 PRINT /WORD/
4 MAKE

NAME: "NEWWORD"

THING: BUTFIRST OF /WORD/
5 TRIANGLE /NEWWORD/
END

To use TRIANGLE we w.oite -

TRIANGLE "CIRCLE"

CIRCLE
IRCLE
RCLE
CLE

LE
E

Full Tt Provided by ERIC.

Report No. 1889 Bolt Beranek and Newman Inc.

The factorial function is an illustration of a deeper recursive
procedure closely related to the principle of "mathematical
induction”". The definition of the factorial functicn 1s
FACTORIAL(1l) = 1

FACTORIAL(N) = N x FACTORIAL(N-1), N > 1

In LOGO we write -

TO FACTORIAL /N/

1 TEST IS /N/ 1

2 IF TRUE OUTPUT 1

3 MAKE "N-1" DIFF OF /N/ AND 1

Y OUTPUT PRODUCT OF /N/ AND FACTORIAL OF /N-1/
END

To use FACTORIAL we write -~

PRINT FACTORIAL OF 7
5042

Note in the above procedure the use of a PRODUCT operation for
integer multiplication and the use of the two-input form of the
MAKE command.

A similar non-numerical procedure for reversing the order of the
letters in a word (i.e., writing it backwards) is:

TO REVERSE /WORD/

1 TEST IS COUNT OF /WORD/ 1

2 IF TRUE OUTPUT /WORD/

3 MAKE '"NEWWORD" BUTLAST OF /WORD/

4 OUTPUT WORD OF LAST OF /WORD/ AND REVERSE OF /NEWWORD/
END

-26~

Report No. 1839 Bolt Beranek and Newman Inc.

To use REVERSE we write -

PRINT REVERSE OF "ELEPHANT"
TNAHPELE
PRINT REVERSE OF FACTORIAL OF 7

ghgs

Note in the above procedure the use of the COUNT operation -
COUNT of a word (sentence) i1s the number of letters (words) in
the word (sentence). Note also that the name /WORD/ is as

distinct from the operation WORD as it is from the literal word
"WORD".

In LOGO the principle of mathematical induction is embedded in a
more general class of recursive principles. These can be system-
atically investigated in a range of cases of increasing difficulty
starting from the trivial recursion in the earlier SPEW procedure,
proceeding to simple recursions like that in TRIANGLE through
deeper examples as in FACTORIAL and REVERSE, and then beyond.

The study of recursive procedures can provide a valuable approach

to understanding the formal ideas underlying mathematical reason-
ing.

Experience in writing LOGO procedures is equally valuable in
teaching the heuristic aspects of mathematical work. Such
experience 1s fostered by projects that involve writing several
procedures to functlon together as a single program. This kind
of activity was an important part of the seventh grade classroom
work during the year. Several examples of such projects are
shown and discussed in Part 4.3.

Rerort No. 1889 Bolt Eeranek and Newman Inc.

Some changes were made in the nomenclature of LOGO at the end of
the school year for pedagogic and mathematical reasons. Thus,

in the programs encountered in the body of the report, the reader
should note that RETURN is a synonym for OUTPUT, and CALL is a
synonym for MAKE (here the order of the inputs for "NAME" and
"THING" is reversed). Further, TTIST was not used. Predicates
(e.g., IS) stood alone and IF YES, IF NO were used in place of

IF TRUE, IF FALSE.

2.3 The Project
This project concerns the use of LOGO as a framework for teaching
mathematics. Specifically, our study explored that idea in the

following ways.

(1) Students. We deliberately chose to work with a small

class of "average" seventh-grade students. (Ten of the
students were in the middle mathematics track of the school's
five-track system. The other two had a slightly higher
placement.) We chose a small class to facilitate more in-
tensive study of individual children and to permit sufficient
amount of individual student use of computer time (there were
six computer terminals in one classroom). The school, Muzzey
Junior High &chool in Lexington, Mass., was chosen mainly
because of the relatively long class reriod - a full hour
session, four days a week - which gave us some extra freedom
in scheduling the students' time between classroom discussion
and laboratory work at the terminals.

Report No. 1889 Bolt Beranek and Newman Inc.

(2) Subject. Our goal was to give the students an introduc-
tion to high school algebra, which they normally would not
have studled before ninth grade. (We managed to get a good
start on this despite having to take more time than we
anticipated in teaching LOGO itself.)

(3) Presentation. The mathematical material in the course
was introduced and developed wholly and entirely in terms of
LOGO programs. (This included the classroom teaching of all
the arithmetic and algebra, not just materlal assigned for

working out at the computer terminals.)

The major object of this work, the exploratory development of a
new curriculum, was to test the feasibility of the underlyilng
ideas about content and presentation by putting them in tangible
form and trying them out in the classroom. The main activity was
the junior high school teaching experiment. During the last half
of the school year we expanded the effort by starting up a
parallel activity -- teaching LOGO to a small group of second-
and third-grade students. Because the work with elementary
school children introduces LOGO with particular ease, we present
it first.

-29-

Report No. 1889 Bolt Beranek and Newman Inc.

3. Elementary Teaching Investigation

The purpose of this part of the work was to gain an understanding
of the problems of teaching formal skills to very young children.
An appropriate foundation for learning formal ways of thinking

at an early age could have a profound impact on subsequent
intellectual development. We thought i1t plausible that LOGO
could be taught to second- or third-grade children as a starting
point.

Taken at face value, Piaget, and most other serious students of
developmental psychology, must be read as casting important doubts
on the feasibility (or even the advisability) of teaching LOGO to
children of age eight or nine. Our confidence that such an exper-
iment was worth pursuing was based on a careful consideration of
the real content of Piaget's thesis and on the nature of its

experimental validation. The two major points are the following:

(1) No serious controlled attempts have been made to teach
what Plaget would call "formal thinking" at much earlier ages
than it naturally develops. Indeed, we would argue that
programming provides a uniquely powerful tool for this and so,
by its very nature, invalidates any negative conclusions
drawn from previous experiments.

and
(2) The apparent difficulties suggested by the psychologists
(and, indeed, by common knowledge of children) apply unequally
to different aspects of learning to program. Thus there is

nothing in Piaget's writing to suggest that a seven-year-old
child should have the slightest difficulty dealing with

programs such as

Report No. 1889 Bolt Beranek and Newman Inc.

TO MUMBLE /JUMBLE/

1 PRINT /JUMBLE/

2 MUMBLE /JUMBLE/

END
They do suggest that children of this age should find it very
hard to debug the kind of program with a branching structure

which makes it necessary to hold in mind a number of possible

outcomes or to carry out "hypothetico-deductive" experimen’s
to formulate a theory of what is wrong.

These two points together urge the quest for an area of program-
ming in which one can find suitable problems to provide a moti-
vated learning foundation for small children without going beyond
the more "elementary" program forms. Once such a foundation is
established, it will become possible to probe the true difficul-
ties that face teaching formal skills to small children.

As a first step in this preliminary study, our goal was to
determine whether or not some very young children could learn
the elements of LOGO programming.

3.1 Overview

This work was conducted at the Emerson Elementary School in

| Newton, Massachusetts. We installed a single computer terminal
i there at the end of January 1969. The school chose the children
; who were to participate in the study. These comprised, for the
%, most part, mathematically "average" children whose ages ranged

| from seven through nine, though there were some "underachievers"

) and one of the children was mathematically "brighter than

average".

Report No. 1889 Bolt Beranek and Newman Inc.

The children were taught by Mrs. Marjorie Bloom who had previous-
ly taught the elements of LOGO to the class of junior high scl.ool
students. Mrs. Bloom is a professional teacher. She had virtu-
ally no previous experience with computers and programming prior

to joining the project in July 1968.

The teaching of LOGO was done largely through a ceries of program-
med lessons of a relatively open-ended sort. These were written
by Mrs. Bloom in the LOGO language itself. They were used by

each of the children in an interactive, conversational mode.

The kind of presentation used with the junior high school
students, classroom teaching with associated individual wcrk at
the terminals, was not feasible here because of constraints on
the childrens' time and schedule and the limitations posed from
having only one computer terminal available. We were, however,
interested in seeing that a presentation along these lines,
properly monitored by a teacher, and augmented by some work in

writing programs at the terminal, was feasible.

A narrative discussion of the work as documented in the teacher's
daily log, and samples showing the childrens' use of all the
teaching materials, follow in the next parts of the report. These
give a good idea of what happened, i.e., of the childrens' progress

and problems. Our main conclusions were as follows.

(1) Children of second and third grade level learn the

elements of LOGO programming with ease.

(2) Most children at this level cannot, during such a short
interval, learn to write or debug programs as complex as
REVERSE (as in Part 2.2 above). Only one child was able,

Report No. 1889 Bolt Beranek and Newman Inc.

within the four-month period, to deal freely with programs
more complex than MUMBLE.

(3) Children of this age do acquire a meaningful understand-
ing of concepts like variable, function, and formal procedure
(though not those words) through their experience with LOGO.

(4) The children showed educational benefits of an extra-
mathematical kind as side effects of the teaching. The most
evident one was a striking improvement in reading rate for
most children during this period. They acquired a technical
vocabulary and learned to follow relatively sophisticated

verbal instructions.

The remainder of this section includes the narrative description
from the class log, transcripts of student runs of each of the
series of programmed lessons, the LOGO teaching programs for a
pair of typical lessons, and transcripts illustrating the games
played by the childreﬁ at the terminal from time to time

throughout the course.

-33-

-

Report No. 1889 Bolt Beranek and Newman Inc.

3.2 The Children's Work
- excerpts from the daily log

Work with children at the Emerson School began January 29,
1969. Mrs. Bloom started with twelve children -- second,
third, and fourth graders -- divided into four small classes.
Because of snowstorms and a school holiday week, resulting
in only five days of school in the first month, the group
was reduced to two second graders and six third graders.
Five of these children had individual instruction at the
terminal for about 20 minutes a session, and three children
worked together as a group, also for 20 minutes. The chil-
dren had four sessions a week for eleven weeks from the
first week of March to the end of May. 1In addition to the
regular group of eight, an emotionally disturbed third
grader participated for twelve 20-minute periods. From

May 29 through June 13, instruction continued with only four
children to see what additional progress might be made if
they were given a little more time at the terminal. The
maximum amount of instruction time for any child was about
fifteen hours over the entire period.

We began each group with the HI procedure, a programmed greeting.
It did not seem to bcther anyone that the procedure typed out
identical responses =0 each child. Some children typed in funny
answers deliberately, such as RUTHANNEDUM for name and 500 for age.

+«HI *

HI, THERE!

WHAT'S YOUR NAME?

*RUTHANNEDUM (child's typed-in response)
HOW DO YOU DO, RUTHANNEDUM!

HOW OLD ARE YOU?

“508 (child's typed-in response)
MY, YOU LOOK VERY GROWN UP FOR ONLY 588 YEARS OLD!

I HOPE YOU WILL HAVE A VERY GOOD TIME WITH ME, AND THAT
YOU WILL TRY A LOT OF FUN THINGS!

GOODBYE FOR NOW, RUTHANNEDUM!
“-

~34-

| Sutiange

| iapihg

M Yt

L 3E__

WEORTET

Report No. 1889 Bolt Beranek and Newman Inc.

The entire group was delighted and hysterical at the machine's
answers. In two of the classes we went on to modify the HI
procedure. The second graders added I LIKE YOU to the responses.
The third graders wrote in YOU ARE VERY GOOD-LOOKING.

The next day, the two second graders started off playing the game
FOUR-IN-A-ROW at the computer terminal. Mary Jaye lost her game,
but: Steven played to a draw. He seems to feel that this is tanta-
mount to winning. Then, using an outline (on cardboard) and
stickers, each child made his own copy of the teletype keyboard.

I showed the two classes comprising the oldest children (and
Karen Coffey from the previous class, who didn't want to leave)
the operation of two procedures, LAUGH and KEEPLAUGHING.

+LAUGH
HAHA

+~KEEPLAUGHING
HAHA
HAHA
HAHA
HAHA
HAHA
HAHA

They were fascinated with KEEPLAUGHING although initially they
showed some concern about how to make it stop. I teased them
briefly before showing them the break key. Once they knew they
could stop it whenever they wished, they were delighted to let it
run on and on and were busy measuring the lengths of the paper
which were printed out from each run. Since they enjoyed these
two procedures so much, 1 encouraged them to write a CRY and a
KEEPCRYING. Following the models of LAUGH and KEEPLAUGHING -

~35-

Report No. 1889 Bolt Beranek and Newman Inc.

; TO LAUGH
i 1§ PRINT "HAHA
END

TO KEEPLAUGHING
1§ PRINT "HAHA™
2 KEEPLAUGHING
END

they wrote the following two procedures,

TO CRY
1§ PRINT '"BOOHOO"
1 END

TO KEEPCRYING

1§ PRINT ""BOOHOO"
2ff KEEPCRYING

END

A

and tried them out.

+CRY
BOOHOO

+~KEEPCRYING
BOOHOO
BOOHOO
BOOHOO

The next day, after the success with CRY with the two older
groups, I decided to try it with the second graders and the first
class of third graders. They seemed to enjoy it just as much and
they were equally successful with it. On Thursday I suggested a
problem: write a procedure which will type something over and
over again down the page. Each of the girls wrote a procedure
which typed her first name down the page, and then Shawn wrote
one which typed SHAWN MICHAEL DALEY down the page. The only
difficulty Shawn had was spelling Michael.

Keport No. 1889 Bolt Beranek and Newman Inc.

Rosemarle brought in two procedures -~ a KEEPROSEMARIEING and a
KEEPMASTERMINDING. (She and Joan have decided to name the
computer MASTER MIND.)

o Kee;%smmmmn B
\

fa\ \(\kk@Q Og

~37-

Report No. 1889 Bolt Beranek and Newman Inc.

\

We typed them in and tried them.

«<TO KEEPROSEMARIEING

>1 PRINT "ROSEMARIE"

>2 KEEPROSEMARIEING

>END

KEEPROSEMARIEING DEFINED
+<KEEPROSEMARIEING
ROSEMARIE

ROSEMARIE

ROSEMARIE

ROSEMARIE

+<TO KEEPMASTERMINDING

>4 PRINT "MASTERMIND"

>6 KEEPMASTERMINDING

>END

KEEPMASTERMINDING DEFINED
“~KEEPMASTERMINDING
MASTERMIND

MASTERMIND

MASTERMIND

MASTERMIND

I introduced the operation of naming to the last class by example,
without prior discussion. I simply typed in

CALL
THING: ''DOG"
NAME: '"'SNOOPY"

and then we tried PRINT "SNOOPY', PRINT THING OF '"SNOOPY'", and
PRINT /SNOOPY/.

On Wednesday, February 5, a second-grader, Steven, played two
games of FOUR-IN-A-ROW as did Mary Jaye and Nell. While they
were playing, Steven wrote a PRINTSTEVEN which printed the

E

I
'

Full Tt Provided by ERIC.

o

Report No. 1889 Bolt Beranek and Newman Inc.

letfters S,T,E,V,E, and N one under another. He wrote the proce-
dure by himself. The only difficulty he had was in forgetting to
demarcate the letters with quotation marks. Then he wanted to
get his program to keep typing these letters down the page.

In the other classes I demcnstrated and explained the operation
COUNT for words and the children figured out what COUNT does for
sentences. We went on to SUM and DIFFERENCE and they experi-
mented with lots of numbers, checking the computer's accuracy.

Rosemarie taught the computer a simple poem. The procedure name
was the title of the poem, and the instructions were to print
the whole pcem.

Because of snow emergencies and February vacation, class did not
meet again until March 6. We continued with eight children - five
working individually and three as a group.

(From this point, the children's daily work included short inter-
active computer-adninistered lessons. Typescripts from the first
three lessons - TEACHPRINT, TEACHWORD, and TEACHSEN - are
reproduced next to i1llustrate the early material and its use.

The children's typlng is unierscored in these typescripts.

The entire set of lessons 1s reproduced later on.)

-39~

Report No. 1889 Bolt Beranek and Newman Inc.

cLESSON]

IN THIS LESSUN THEWE ARE SOME LINES TO READ. THE COMPUTER TYPES VEXY
FAST . IT wILL STOP EVExY SO OFTEN SO THAT YOU ®ILL HAVE TIME TO READ.
WEN YO vANT IT TN GO ONs PRESS THE KETUKRN KEY. 2

THIS MARK 3 MEANS THAT THE COMPUTER HAS MOKE TO TELL YOHJ. PRESS THE
HETLESN K2Y wHEN YOU AKE RKEADY TO KEAD IT. 9

THE COMPUTER LINDERSTANDS SOME SPECIAL COMMANDS. THE FInST ONE WE »ILL
MLK ARQUT IS -= PRINT. ?

LET 'S TELL THE COMPUTEfNR T PINT A wOFDe I WwWILL TYPE THE COMMAND. Y'J
P RESS THE KETURN KEY LHEN 1 AM FINISHED.

PRINT ""CARBACE"
CARBAGE

NOL LET'S TELL THE COM2UTEx TO PRINT A SENTENCE. YOU PRESS THE RET!HRN
KEY THIS TIME TOO.

PRINT "'D0O YOU LIKE THE H<EATLES?"
DO YOU LIXKE THE gEATLES?

NDTICE THAT THERE WERE - vJuTATION " ') MARKS AFOIUND THE EXACT WOkDS THE
COMPUTER ¥AS ASKED TU PHINT. @

NOW TRY TO MAXKE THE CoOow2HTER PRINT SOME OF YOUR OWN THINGS. 8

DON'T wORNY A=IT W InNG MISTAKES!D Wil ALL DO IT! THE COMPUTER WILL TRY
To HELP YOI RY EXPLAINING VHAT WENT WWONGe @

HAVE FIN!

-

FLESSON?

REMEVSER == THE MARYK o MEANS THAT I AM WAITING Fu~ YOU TO PRTSS THE
RETUXN KEY. @

AFTER YOU LEARN TO USE LOGOs, YOU WILL BE ABLE TO TEACH THE COMPJTER TO
M NEY THINGS. @

YOU WILL TEACH THE COMPUTER TO DO SOMETHING NEW KY WRITING A PROCEDURE.
@

4o~

Report No. 1889 Bolt Beranck and Newman Inc.

A PROCEDURE IS LIKE A RECIPE. IT HAS ALL THE INGREDIENTS Ang 0 FedCTION
IN IT TO MAKE SOMETHING. @

A FEW PROCEDURES AKE ALREADY RUILT INTO LOGH. kE WILL TALK AROUT THOSEZ
FFOYE WE TALK ABOUT PROCEDURES THAT YOU &lbLh WRITE. 2

THE PROCEDU~E WE WILL LEARN ABOUT IN THIS LESSON IS CALLED == b=,
LET®*S SEX WHAT IT DOES. @

TYPE THESE WOKDS -- PRINT WORD UF "JP"™ AND "DUWN'
¥ W INT WORD OF "UP' AND "DOWN'
LPDOWN

h4E IS ANOTHER EXAMPLE OF WHAT == WORD == DUZS.

TYPE THIS: PRINT WORD OF "“"TREE'* AND "'TOR"
*PRINT WORD OF "TREE' AND "'TOP'
TREETOP

NOB LET'S SEE HOW GUUD A CUOMPUTER YO WOULD Hk. 2

WHEN YOU S$E£E THE ARKOWs TYPE -- PrACTICE.
~>RACT ICK

PRETEND YOU ARE THI COMPUTE®R. T WILL TYPE AN INST«UCTION. YOU TYPE IN
T HE ANSWER THE COMPUTEX nULD GIVE. 2

PRINT WORD OF "LA' AND "LA"
*LALA
GREAT! LET'S GO ON TO THE NEAT ONE. 8

PRINT #ORD OF 123" AND 4"
1234
KAV O TO THE NEXT ONE! @

e INT S#O0%RD OF "BE" AND "AxD'
N ki)
COOD Fx YO le HEKRE'S THE FOURTH UNZe 9

P [NT BOWD OF TGUOD=" AND "'BYL"
G =iy
«TCHT YND') ARk e ONE MOKE TO Ge 1

RrINT OwrD OF £ annd w0) OF "N AND D
*E!\Jrl
WIGRT YOU Anils AND THRAT I$ THE END OF THIS LESSON. 2

S LUNG FOn N

-

=41~

Report No. 1889 Bolt Beranek and Newman Inc.

“LESSON3 T

ANOTHE~ BUILT-IN LOGO PROCEDURE ISt SENTENCE. @

TYPE THESE #ORDS ==~ PRINT SENTENCE OF "GIRLS'™ AND ‘*LAUGH"
*PRINT SENTENCE OF "GIFLS' AND LAVGH"
CIKLS LAUGH

AS YOUUI SEE, SENTENCE PUTS TWO LOGO THINGS TOGETHER WITH A SPACE
BETWEEN. @

WHAT DO YOU THINK THE COMPUTER WOULD DO %ITH THE NEXT INSTRUCTION? TYPE
IN JUST THE ANSWErx THE COMPUTER WOULD GIVE. @

PRINT SENTENCE OF "BOYSY™ AND *'PLAY"

*BOYS PLAY

GOOD FO® YOUo.

HEFE IS ANOTHER ONE. WHAT WOULD YOU REPLY?

PRINT SENTENCE OF "I LIKE' AND "ICE CREAM"

*] LIKE [CE CrEAM

RIGHT YOU ARE. ‘
THE PROCEDURE -=- SENTENCE =-- WILL PUT TOGETHER ONLY TWO LOGO THINGS AT

A TIviE. @

LOOK AT wHAT YOI MUST DO Ty HAVE THE COMPUTER PUT TOGETHKR THREER
THINGS. @

TYPE THIS: PRINT STNTHENCE OF *'I' AND SENTENCEZ OF 'LIKE®'™ AND "CANDY™
¥ PRINT SENTENCKE OF "I" AND SENTENCE OF *LIKE'™ AwWD '"CANDY"
I LIKE CANDY

NOB TRY TO MAKE SOME SENTENCES OF YOUR OWNs WHEN YOU SEE THE ARFOL.

-

MARCH 6 - The lesson was TEACHPRINT. The first thing I learned
was that even with delays written into the procedure the typeout
is too fast for these youngsters. I need to rewrite these proce-
dures using a stop of some kind so that the youngsters can read
at their own pace and then use the return key when fthey are ready
for more reading material.¥ Greg finished TEACHPRINT and went on
to TEACHWORD.

¥A11l the lesson materials shown here and in the next section
have incorporated this change.

Report No. 1889 Bolt Beranek and Newman Inc.

Jay worked out the print instruction after a few false starts.

He had trouble remembering matching quotation marks.

Ruth Anne, Shawn, and Julie played three games of THIRTY-ONE.

None of them seemed to realize he could win.

MARCH 7 - All youngsters worked on TEACHWORD. Most of them had
no difficulty with the change in directions which allowed them
to control the rate at which information was presented. Karen
kept asking "What shall I do now?" but this seemed to be more
for support than from a real need for help. When I told her my
lips were sealed, she went right over to strike the carriage

return key for more information.

Although the operation WORD presented the children with no
problem, my instructions definitely did. The children had
trouble reading the word 'procedure' and they certainly did not
understand what I was trying to say. An oral explanation seemed

to clarify the issue.

The second and third graders have difficulty executing the
instruction: "TYPE THE FOLLOWING:".

MARCH 10 - Steven worked his way through TEACHPRINT and TEACHWORD.
I left him alone for a few minutes. He tried to type in some
commands in unanticipated places. I am not sure how he inter-
preted the directions -- evidently he saw the stop points as

invitations to type.

When Mary Jaye arrived I gave her a problem in which she had to

use WORD. She wrote out the instruction at the blackboard, and

-43-

[&

Report No. 1889 Bolt Beranek and Newman Inc.

then proceeded to write two or three more., Finally, I asked her
to think about how to get three letters or parts of words together
as one word. She and Steven both pondered this problem for a few
minutes.

Then we worked it out in two parts. First we talked about WORD
OF "C" AND "A". There was no doubt in their minds that this
would produce CA. Then they also knew that WORD OF "CA" AND "T"
would produce CAT. Finally we substituted. WORD OF "C" AND "A"
is another name for CA. If we put this in place of "CA", we get
PRINT WORD OF WORD OF "C" AND "A"™ AND "T". It worked.

“PRINT WORD OF "C' AND "A"
CA

+<PRINT WORD OF "CA'" AND "T"
CAT

“<PRINT WORD OF WORD OF '"C" AND "A'" AND "T"
CAT

“

The other yocungsters worked on TEACHSEN, a lesson for teaching
the LOGO operation SENTENCE.

MARCH 12 - Jay began TEACHFIRLAS. I had asked him to type PRINT
FIRST OF "SHE SELLS SEA SHELLS." He typed it in perfectly (we
thought) but got an error comment. I typed it in and got an
error comment too. I listed the procedure but could find nothing
wrong with it. We went back and reexamined our work and sure
enough, both of us had forgotten the period.

TYPE THESE WORDS AND LOOK VERY CAREFULLY AT THE COMPUTER'S
ANSWER: PRINT FIRST OF "SHE SELLS SEA SHELLS."

®PRINT FIRST OF "SHE SELLS SEA SHELLS"

TRY AGAIN PLEASE. THAT DOESN'T SEEM TO BE RIGHT.

iy

Report No. 1889 Bolt Beranek and Newman Inc.

There is a problem with writing clear directions. The youngsters
have difficulty deciding when they are to type 1in an instruction
and when they are simply to type in the result obtained from

performing the instruction.

The LOGO lessons are very much allke, and perhaps a little
monotonous, certainly not very creatilve or original. Yet, they
do accomplish theilr intended purpose. The children are learning
to understand the elementary LOGO operations, they seem to be
happy with this kind of instruction, and I have learned a great
deal about clarity of presentation and about learning difficulties.

MARCH 14 - Al1 the children understand and freely use the opera-
tions FIRST, LAST, BUTFIRST, and BUTLAST. However, WORD and
SENTENCE seem less easy for them perhaps because of the need for
two inputs. Also, the children confuse a word in LOGO with the
LOGO combining operation WORD.

MARCH 24 - The children worked on decoding the message in the
LESSON MESSAGE with success and apparent pleasure. Everyone
except Karen guessed the final message at least three lines before
the end. When I suggested that perhaps we should stop and go on
to something else, they were insistent that they be allowed to

finish.

MARCH 26 - Everyone worked on TEACHCALL.

There are some difficulties with naming: e.g., (1) It seems
more natural for children to put the name first, then the thing.

(2) Children expect to be able to request the name of a thing

as well as the thing of a name.

_45-

Report No. 1889 Bolt Beranek and Newman Inc.

MARCH 27 - Mary Jaye worked for almost an hour today. We worked
on CALL, which is difficult. She still 1likes to look at long
strings of digits. I suggested that she try to keep her inputs

short. She agreed with me and then typed out 20 and 30 character
strings!

“PRINT BUTLAST OF "ABCDEFGHIJKLMNOP"

ABCDEFGHIJKLMNO
“<CALL
THING: "97865432149777777777777777777777777777777"
_ NAME: "KEYM

+<PRINT /KEY/
97865432149777777777777777777777777777777

<

Then she played TEIRTY-ONE. Mary Jaye apparently cannot have too
much of this, even though she didn't win. A1l her efforts were
trial and error. It became apparent to her that 24 was a key
number. She would comment ... "He's going to win, I think - he
has 24." Then, however, she would suggest that maybe if she tried
a different input when he had 24 she could still win. She also
tried a couple of illegal inputs when she could not win with legal
ones, just to see what would happen.

Greg tackled CALL with considerable authority and confidence.
The CALLPRACTICE exercises generally worked better than the
TEACHCALL lesson material proper. The children seemed to learn
the effect of CALL by comparing different inputs and outputs.

When they make up their own names, the children have trouble
remeémbering to use quotation marks (as I did when I was learning).

The children know that P stands for PRINT. I find, however, that
they still type the whole word rather than the abbreviation.

Report No. 1889 Bolt Beranek and Newman Inc.

MARCH 31 - Mary Jaye typed out the procedure INTRODUCE for me

(I told her what to write) and watched what happened when we ran
INTRODUCE using "MARY JAYE SIMMS" for /NAME/. We then worked on
another procedure which she named TALK. She wrote a few
instructilons.

<TO TALK

>2§ PRINT "121212121"

>30 PRINT "2323453454 4400041410100
>4g PRINT "TALK"

>5@ PRINT "SANTA CLAUS"

>END

TALK DEFINED

Then I suggested testing it.

<TALK

121212121
2323453454444
TALK

SANTA CLAUS

She was delighted with it and edited it to add many more instructions.

«EDIT TAK \\LK
>6@ PRINT "TOP AND HOP™"

>7@8 PRINT"LOGO"

>8f PRINT "ADAM 12"

>9@ PRINT "GOST"

>1f¢@ PRINT "12343434343434555555556666667 08090180200 30"
>2@@ PRINT "12121212121212212121212121"

>300 PRINT "3456789000@00gd0dg0op1000ppppregpoop2p0paappppp3pppp"

>4gg PRINT "GOOD-BY"
>END
TALK DEFINED

(Finally she tested it with great
“TALK pride and joy.)
121212121
2323U534 54000 L4LLLLLY
TALK
SANTA CLAUS
TOP AND HOP
LOGO
ADAM 12
GOST
12343434343434555555556666667080901g020¢030
12121212121212212121212121
3456789000000 00RP0RRPN10P0ERARPEERRRN 2000000000 R30P0H
GOOD-BY
<+

-47-

R ——

Report No. 1889 Bolt Beranek and Newman Inc.

Then we tried some naming again. Her work with long strings gave
her some difficulty. For the first time I think she saw some
value in working with brief words or symbols.

Jay also worked with INTRODUCE. I gave him models and he produced
some of his own things using my model. In fact, we seemed to

make so much progress that I threw in a second variable /AGE/.

He obviously enjoyed using his friends' and family's names in
these procedures. Before he ran each procedure, he would tell

me just what the procedure was going to print out.

<LIST INTRODUE\CE

TO INTRODUCE /NAME/

19 PRINT /NAME/

20 PRINT /DATE/ (/DATE/ and /TIME/ are special LOGO
3¢ PRINT /TIME/ names for the current date and time,
END respectively.)

<INTRODUCE '"JAY"
JAY

3/31/1969

1:27 PM

<EDIT INTRODUCE

>4 PRINT SENTENCE OF /NAME/ AND '"IS VERY NICE"

>58 PRINT SENTENCE OF /NAME/ AND "GOES TO EMERSON SCHOOL"
>END

INTRCDUCE DEFINED

<LIST INTRODUCE

TO INTRODUCE ,NAME/

19 PRINT /NAME/

2@ PRINT /DATE/

3¢ PRINT /TIME/

4P PRINT SENTENCE OF /NAME/ AND "IS VERY NICE"

50 PRINT SENTENCE OF /NAME/ AND '"GOES TO EMERSON SCHOOL"
END

-U48~

!
]
|
3

Report No. 1889 Bolt Beranek and Newman Inc.

<INTRODUCE "LISA"

LISA

3/31/1969

1:43 PM

LISA IS VERY NICE

LISA GOES TO EMERSON SCHOOL

«TO DESCRIBE /NAME/ AND /AGE/
>1g PRINT /NAME/
>2¢ PRINT SENTENCE OF /AGE/ AND "YEARS OLD"

>3@ PRINT SENTENCE OF /NAME/ AND "LIVES AT 19 CIRCET AVE"
>END

DESCRIBE DEFINED

+«DESCRIBE "LISA'" AND "o"
LISA

6 YEARS OLD

LISA LIVES AT 1§ CIRCET AVE

<«

Julie was back today after a considerable absence. Shawn acted
as teacher and taught Julie about CALL. She caught on quickly.

APRIL 2 - Today, using TEACH-THE-COMPUTER, was the first time
that the children made their own procedures. Mary Jaye, Jay, and
3 the group of Ruth, Julie, and Shawn did very well. Greg kept
asking about each step as if he hac never seen any directions.
Perhaps T should have had him read the directions aloud. This
seems to help. When he did finally write a procedure of his own,
it was the only one that was not almost a carbon copy of SPELLCAT,
the one I had written for demonstration.

Steven did almost two lessons, to make up for his absences. It
is amazing that he remembered the exact names he had used and
all the work he had done previously.

APRIL 3 - Greg remembered our initial work with procedures which
kept typing down the page. He really wrote the procedure

-49-

Report No. 1889 Bolt Beranek and Newman Inc.

KEEPSADSACKING by himself - though he looked to me for confirma-
tion at every step.

+<TO SADSACK

>1@ PRINT '"HI"
>2@ PRINT "ZOOM"
>END

SADSACK DEFINED

«PRINT "HI zZOOM" (I am not sure what he was thinking here)
HI ZOOM

3 +PRINT "SADSACK"
i SADSACK

+~SADSACK (He finally worked this out)
HI
ZO00OM

+TO KEEPSADSACKING 7
>1f SADSACK ,

| >2@ KEEPSADSACKING

| >END

E KEEPSADSACKING DEFINED

+~KEEPSADSACKING
HI

Z00M

HI

ZOO0OM

HI

Z00M

HI

Z00M

HI

ZOOM (This printout went on for 4 pages)

I suggested to Jay that we work out a different kind of procedure.
I showad him GROW (the printout only, not the program), thinking
he might try to write a procedure which would do this.

-50-

R DA
hi

U N e

R
4

L

Aruitoxt provided by Eic:

ERIC

Report No. 1889 Bolt Beranek and Newman Inc.

+~GROW

Z

ZZ

277

27727
2727717
12727717
2727777217
272772772717

He ended up with a similar idea, but a significant variation.
He wrote the procedure GROWSMALL,

+<TO GROWSMALL

>1f PRINT “EASTER"
>2@ PRINT "ASTER"
>3 PRINT "STER"
>4g PRINT "TER"
>50 PRINT "ER"

>6@ PRINT "R"

>END

GROWSMALL DEFINED

and then tried it out.

+<GROWSMALL
EASTER
ASTER

STER

TER

ER

R

APRIL 7 - Today was game day. The children could select one game
of their own choosing. The popular choice was THIRTY-ONE. I
also taught most of them NIM. By and large they play at random.
No cne has really looked to see how the computer wins each time.

Greg was annoyed that he could not win at NIM. He was perhaps
the only one to try to study what the computer did. He filnally
did win a game by emulating the computer but he had several
false starts before he got there.

Full Tt Provided by ERIC.

:EKKj

Report No. 1889 Bolt Beranek and Newman Inc.

APRIL 10 - Today all of the group worked at least for a while on
some debugging of programs. Greg was eager to go back to the
SADSACK program he had written. He is delighted with the spewing
out of line after line of print.

Jay worked on debugging COUNT-BY-TWO.
<LIST COUNT-BY-TWO

TO COUNT-BY-TWO
1§ PRINT "2"

2§ PRINT "6

3¢ PRINT "1g"
END

<EDIT COUNT-BY-TWO
>15 PRINT '"y"

>25 PRINT "8"

>END

COUNT-BY-TWO DEFINED

+<COUNT~-BY~-TWO
2
4
6
8

14

APRIL 14 - I have been working with a disturbed third grader who
was expelled from another school last year in the second grade.

He knows and uses every four-letter word in the book. The first
time the computer did not respond as he wished (during a game of
tic~tac=toe), he typed in ---- (not reproduced here). The
computer responded ----~ IS NOT DEFINED. However, since that

time he has become protective of the terminal. Another youngster,
traveling through at some time when the room was vacant, left his
imprint on the paper, a rather mild expletive. My student was
indignant and proceeded to dispose of the paper quickly.

Report No. 1889 Bolt Beranek and Newman Inc.

Steven and Mary Jaye both worked on LESSON TEN. Steven needed
no explanations from me at all until the very end when he needed
to talk about FIRST OF FIRST OF a sentence. It is a pleasure to

watch him at work.

Mary Jaye ran into a few more problems than Steven did but she
worked her way through them on her own, with great success. Both
of them guessed the message but both wanted to finish the entire
set because "it was fun." Mary Jaye completed debugging SPELLDOWN
first. Together we analyzed Line 30 and then she wrote Line 20

in a flash with no help at all. I was astounded. I wonder now
whether it was a wild guess or whether she really had a flash of

insight. ¢

APRIL 16 - Steven had earned his game day on Monday. He enjoyed
HANGMAN but was annoyed when he was not successful. He started

a NIM game while I was doing an errand. When I returned I found
that he was working with an inordinately large number of X's. I
suggested that he stop and restart with a more reasonable number
since time was running out. He restarted with 7 X's and won --

which delighted him.

APRIL 28 - Conversation with Steven after he looked at the last

part of LESSON TWELVE:

Steven: Doesn't it know how to DOUBLEFIRST?

Mrs. B.: No, it doesn't!
Steven (with great assurance!): That means I'll have to teach

it how!

| After he started to write DOUBLEFIRST, he decided that the title
needed repairs. I had to show him how to edit this. Then I
- asked him: What are the parts you are going to put together?
How do you put them together? He wrote the entire procedure by

- himself after these two rhetorical questions.

o -53-

[

r,-—m--; Polobi ST o P

7

Report No. 1389 Bolt Beranek 'and Newman Inc.

Karen is a puzzle! She seems to understand the syntax of some
simple programs - but it was apparent that the concept of a
procedure is still not clear. We went over the printout line by
line to see where it came from. Then she added lines and told
me with confidence where they should affect the printoust.

Shawn wrote DOUBLEDOG, Julie wrote DOUBLEHA, and Ruth Anne wrote
DOUBLERUTH-ANNE. They had no problems. They changed line

numbers so their procedures would not be carbon copies of each
other.

APRIL 30 - Greg wants and needs to be right and is annoyed if he
| makes a mistake. Despite this concern, however, he works very
{ fast and often hits the return key before he has checked his
line to be sure it i1s correct.

MAY 1 - Steven wrote several forms of TRIPLE today. He got a
few complaints from the computer - the error comments were help-
ful to him. He wrote a procedure FIRSTLAST without help. He

: discovered on his own that he had failled to give the procedure
an argument and corrected it himself.

«TRIPLE "BOY"

TRIPLE ISN'T DEFINED.

«TO TRIPLE "EOy"

, YOU NEED / MARKS AROUND EACH ARGUMENT.

; «TO TRIPLE /ANYWORD/

>16 PRINT WORD OF WORD OF /ANYWORD/ AND /ANYWORD/ AND /ANYWORD/
>END h

TRIPLE DEFINED

; «TRIPLE "DIET"
e DIETDIETDIET
«TRIPLE "FOX"
FOXFOXFOX

-5l

7 TR AT N S O G AT AT I s P 2T AR TN G BT T RS e B T et R TR AR e e e

Report No. 1889 Bolt Beranek and Newman Inc,

+«TO FIRSTLAST

>1@ PRINT WORD OF FIRST OF /ANYWORD/ AND LAST OF /ANYWORD/
>EDIT TITLE

TITLE TO FIRSTLAST /ANYWORD/ (Changes TITLE line)
>END

FIRSTLAST DEFINED
+<FIRSTLAST "SAM"
SM

MAY 5 - Jay was working through LESSON THIRTEEN on procedures
which have one, two, and no inputs. I think he really was

confused until he gave the computer the instruction, ADDON "TREE".

When this turned out its own peculiar sentences, he suddenly
seemed to catch on.

Today I gave Karen LESSON ELEVEN containing procedures te be
debugged. She did pretty well. She started off hesitantly but
was reasonably successful as she went through the lesson. This
again was a lesson purely between Karen and the computer, and
all of us were the better for it.

Greg struggled today - first to remember how to use DOUBLE and
then to get a DOUBLEFIRST written. He needed a great deal of
guidance and really could not have written this alone.

Shawn, Ruth Anne, and Julie looked at DOUBLE and tried it once.
They then struggled with DOUBLEFIRST. They were so busy giving
each other directions that I let them struggle. They ended up

writing DOUBLE again, but only recognized this when they saw the

output.

MAY 14 - We began some review work in preparation for our

demonstration at the Spring Joint Computer Conference this Friday.

=55~

Report No. 1889 Bolt Beranek and Newman Inc.

Karen was great today. She wrote DOUBLEDOG like a pro. I know
that she worked from the model, DOUBLECAT, and copied this
exactly, but this is progress for her.

Steven did some interesting work with SURPRISE-4 (LESSON FIFTEEN).
He tried to list the procedure E but it had been made invisible
to students. Then with considerable persistence he kept trying
each new output as the next input. His theory was that perhaps
the scrambling was so ordered that eventually the procedure E
would return the letters of his name in the proper order. As he
got to his last try, he said, "This is it, one way or another."
He got the storybook ending - the letters of his last name
appeared in proper order. Of the youngsters who tried this
since, he was the only one to look for a pattern in the
scrambling.

+<LIST E

TO E /YOUR LAST NAME/
(The procedure E could not be listed.
«<E "EPSTEIN" It had been rendered invisible.)
NIETEPS
<E "NIETEPS"
SPETNIE
<E "SPETNIE"
EINTSPE
<E "EINTSPE"
EPSTEIN

MAY 16 - Friday, the children demonstrated their work at live
terminals for two hours at a special education meeting held as
part of the A.F.I.P.S. Spfing Joint Computer Conference in Boston.
It was a long, exhausting day -- the kids were great and they
loved every minute! I was concerned that they were going to be
frightened and pressured by the crowds and the questions. They
ate it up =-- they turned out to be big showoffs!

~56-

Report No. 1889 Bolt Beranek and Newman Inc.

MAY 19 - LESSON FIFTEEN seems to help the children to focus on
the number of inputs a procedure needs. On the other hand, all
the youngsters, except perhaps Steven, had‘difficulty remembering
what to do if a procedure required no input.

MAY 21 - Steven was the first student today and had no problems
writing TRIPLE on his own.

TO TPL /ANYNUMBER/
1§ PRINT SUM OF SUM OF /ANYNUMBER/ AND /ANYNUMBER/ AND /ANYNUMBER/

END

«TPL "1gggn
3ggg-

«TPL "15g"
459

Shawn, Ruth Anne, and Julie worked very well together today help-
ing each other over the hurdles. They got carried away by work-
ing on the proper number of procedure inputs and forgot to
specify the procedure they were using. They were able to help
each other with this.

Mary Jaye still continues to use the long strings as input. I
am not sure what appeals to her about these long numbers, but it
is obvious that she does enjoy them.

«MYSTERY-6 "AUGUST' 13" mig"

MY BIRTHDAY IS AUGUST 13

I AM 1§ YEARS OLD.

«MYSTERY~-6 "HALLOWEEN" "1234343" "1234567891@83333300gggpag"
MY BIRTHDAY IS HALLOWEEN 1234343

I AM 1234567891833333400@8@g808 YEARS OLD.

<+

-57 -

|
|
T —,

[Jre R "

Report No. 1889 Bolt Beranek and Newman Inc.

Karen again appeared to be stumped by the request to write
DOUBLE. However, when she was left alone, the next thing we

heard was an "I did it! It worked!" She can do the job when
there is no one around.

+<TO DOUBLEKAREN

>1@ PRINT WORD OF "KAREN'" AND '"KAREN" -
>END ,

DOUBLEKAREN DEFINED
+<DOUBLEKAREN

KARENKAREN
<«

MAY 23 - Jay is trying now to work out his problems with the
procedure TPL. TPL actually was supposed to triple a number by
adding. Jay however wrote a word tripler, which was fine. He
found out by himself that one of his bugs yesterday was his
failure to specify an input. Today he put that in immediately.

«TPL "TREE"
TREETREETREE
«TPL "y"

byl

«TPL "TEE"
TEETEETEE

“

May 28 - Steven began by reviewing conditionals. He worked out
the first one himself. Then I suggested that he try - IS /GREEN/
/BLUE/. As he was typing it in, he said to me, "I know why you
want me to try this one. You think I'll say no because they are
different letters, but I know they are the same." (In this
exercise they both name the empty word.)

Report No. 1889 Bolt Beranek and Newman Inc.

Perhaps any of the children could make éreat progress in LOGO 1if
time permitted. The perilods seem too short. For the next two
weeks, I would like to work for half-hour periods with four of
the children to see what can be done and how qulckly they can
move. Even a half-hour 1s not much time, but it should help.

* * ¥ * * % * %

No dailly log was kept for the period May 29 - June 13. The group
was reduced to four children - Ruth Anne, Mary Jaye, Jay, and
Steven - during these last two weeks. They finished working
through the remaining lessons and spent the rest of the time
writing LOGO procedures. For the most part, these followed very
closely on the pattern of prescribed models. Thus, glven the
procedure

TO SAYHI

1¢ PRINT "HI"
2¢ SAYHI

END

whose effect was the endless stream

HI
HI
HI

all of the students were already able tc make a (virtually
duplicate) procedure for printing some other message. Here 1s
one of Ruth Anne's,

TO SAYRUTH-ANNE

1 PRINT "RUTH-ANNE"
28 SAYRUTH-ANNE

END

Its effect 1is to print

RUTH-ANNE
RUTH=-ANNE
RUTH~ANNE

-59~

Report No. 1889 Bolt Beranek and Newman Inc.

By the end of the course, they all were able to write a single
procedure for printing any specified message. For example, the
following prc HJure of Jay's:

TO SAY /ANYWORD/
1@ PRINT /ANYWORD/
2@ SAY /ANYWORD/
END

On the last day, Jay used his procedure as follows,
SAY "GOODBYE MISS BLOOM"
which generated

GOODBYE MISS BLOOM
GOODBYE MISS BLOOM
GOODBYE MISS BLOOM

Mary Jaye's last procedure, virtually the same as Jay's, produced
this farewell message.

I WILL MISS YOU
I WILL MISS YOU
I WILL MISS YOU

During these last days, simple recursive procedures such as SAY
and WORKLESS were favorites with all the children. They would
write them anew,

<~TO WORKLESS /ANYWORD/

>1f PRINT /ANYWORD/

>29 CALL
THING: BUTFIRST OF /ANYWORD/
NAME: '"NEWWORD

>3 WORKLESS /NEWWORD/

>END

WORKLESS DEFINED

and then run them repeatedly. These are relatively small
printouts:

-60=-

Report No. 1889 Bolt Beranek and Newman Inc.

- WORKLESS ''1I AM A BOY"
I AM A BOY

AM A BOY

A BOY

BGY

- WORKLESS "!#S$7&°()*=<>?+B[GS"
VU578 () *=<>?2+0(GS
HST82()x=<>24+0(GS
$28'(I%*k=<>?2+0[GS
2&°()%=<>2+0(GS

&' (I*x=<>?24+0LGS
'(I)*x=<>?2+@(GS
(I%*k=<>?2+B(GS
Y%=<>2+0@(GS
*=<>?246(GS
=<>»?4+@(GS

<>?2+@(GS

>7+0(GS

?+0(GS

+0C(GS

elGS

(GS

gS they all liked to make blg ones.

e LORKLISYS ARCDEF GRIJKLMNGD?)R ETHVLXYZABCDEF GHTJRKLYMNOP IRSTIUIVEXYY7 123456 TH9 3"
ARCDEFGHL JHLMNOPCHESTUVHAYZABCREFGHI IKLMNO PORSTUVIHAYZ 1234567799

BCDEFGHT JXLENOPORETUVNAY ZABCHEF GHI JKLIENC PURSTUVRAYZ 1234567899
CREFGHLIKLYNO PR STUVERXYZABCDEN GHI JKLMNOPCRETUVHKYZ 1234567599
NECGHLJYLMAOPGRSTUVHAY ZARCDEF GHI JKLIMNO PARSTUVEXYZ 1234567899

ZABCDEFGHT JKLNMNOPERSTUVHAYZ 12349676569
ABCDEFGHIJKLMNOPARS TUVUAYZ 12345678919
BCDEFGHIJKILMNOPERSTUVIHAYZ 1234567899
COEFGHTJKLUNOPORSTUVWAYZ 1234567599

21234567599
1234567899
234567899
34567599
4567399
S67TH9
61699

1899

899

99

9

¢

-6l

Raport No. 1889 Bolt Beranek and Newman Inc.

Within the remaining time span, only one child - Steven - was

able to use LOGO to go beyond the transliteration of prescribed
models for simple procedures. On June U4, he started working on

his own procedure, COUNTDOWN, which was to record the integers

as they descend to zero (prior to blast-off). He began by writing

+«TO COUNTDOWN /ANYNUMBER/
>1% PRINT /ANYNUMBER/
>2@ CALL

THING: DIFF OF /ANYNUMBER/ AND /ANYNUMBER/

NAME: '"NEWNUMBER"
>30 COUNTDOWN /NEWNUMBER/

>8 IS /ANYNUMBER/ /EMPTY/ (He suddenly realized he needed
>9 IF YES RETURN /EMPTY/ a test for stopping the countdown

>END and it had to precede Line 18)

COUNTDOWN DEFINED
Then he tried out his procedure.

<~COUNTDOWN 5

s WL

Something was wrong. He saw the first bug, a wrong
input in Line 2@, and he fixed it.

+<FEDIT COUNTDOWN

>28 CALL
THING: DIFF OF /ANYNUMBER/ AND '"1"
NAME: '"NEWNUMBER"

>END

COUNTDOWN DEFINED

Then he tried again.

-62-

subtraction

o

Report No. 1889 Bolt Beranek and Newman Inc.

+<COUNTDOWN "7"

== NDoWEFEFuUuoO~N

i
ces \WN K

.

Still something wrong. It continued printing past zero into the
negative numbers. So he fixed the second bug, by changing the
stop rule in Line 8,

+<EDIT COUNTDOWN

>8 IS /ANYNUMBER/ "-1"

>END
COUNTDOWN DEFINED

and then tried once more.

+«COUNTDOWN "4

= = N W

And 1t worked!

§ His next assignment was to make a procedure for counting down by

ﬁ two's. Steven said, "Oh, I know how to do that." Then he wrote
COUNTDOWN=-2 using COUNTDOWN as his model. He changed the
difference operation correctly (Line 2@) but he did not change

the stop rule,

-63=

- e o meew

Report No. 1889 Bolt Beranek and Newman Inc.

TO COUNTDOWN-2 /ANYNUMBER/
8 IS /ANYNUMBER/ "-1"

9 IF YES RETURN /EMPTY/

1§ PRINT /ANYNUMBER/

2 CALL
THING: DIFFERENCE OF /ANYNUMBER/ AND "2"
NAME: "NEWNUMBER"

38 COUNTDOWN-2 /NEWNUMBER/

END

COUNTDOWN-2 DEFINED
So, when he ran his COUNTDOWN-2,

<COUNTDOWN-2 ™g"

it did not stop at 4.

He spotted his bug immediately. He started to fix it and then
said, '"but, I need to keep the 'one'. I might want to start with
an odd number."

<EDIT COUNTDOWN-2

>6 IS /ANYNUMBER/ "2" (Note that he has added a new stop
>7 IF YES RETURN /EMPTY/ rule in Lines 6 and 7, but he has
>END kept Lines 8 and 9.)

COUNTDOWN-2 DEFINED

+<COUNTDOWN-2 "8"

8
6
4
2
g
“
7
5
3
1
<

(So his program will stop for odd
COUNTDOWN-2 "7 as well as even numbers.)

-~ v Zaous 4y EEZTaCE I o o £ 32 (- AT T gl e R e . il ERRE A e CrEvy el A pr e O Y RS IRE T RIIATTE TR S DAL B h S N 5
p/ e e : e ey

Report lio. 1889 Bolt Beranek and Newman Inc.

o e

His next aséignment was to count up from any glven number and
stop at 20. No faltering this time.

; <TO COUNTUP /ANYNUMBER/
i >8 IS /ANYNUMBER/ "21"

; >9 IF YES RETURN /EMPTY/
j >1% PRINT /ANYNUMBER/

g >2@ CALL
: THING: SUM OF /ANYNUMBER/ AND ‘1"
/ NAME: V“NEWNUMBER"

>3@ COUNTUP /NEWNUMBER/

>END

COUNTUP DEFINED
His first program worked.

f «<COUNTUP '"15"
] 15
1 16

17

18

19

20

<

Steven saved his countup and countdown programs in a LOGO file,

Each day when he came to class, he got a copy of his programs

from the file and ran each of them with new inputs. Then he
worked on some new variations. For example, he wrote a procedure
for counting down by threes, and a procedure for counting up to

bl CEr Y e G r £

numbers larger than 24.

His last assignment, on June 13, was to write a procedure for
counting down from any given number to any given lower number.
He went right to it.

; <TO COUNTDOWN /ANYNUMBER/ AND /LOWNUMBER/
1 >8 IS /ANYNUMBER/ /LOWNUMBER/

: >9 IF YES RETURN /EMPTY/

>1f PRINT /ANYNUMBER/

>28 CALL
THING: DIFFERENCE OF /ANYNUMBER/ AND 1
NAME : "NEWNUMBER?"
>3 COUNTDOWN /NEWNUMBER/ AND /LOWNUMBER/
END

—65-

SRR et
Mt i) i

Report No. 1889 Bolt Beranek and Newman Inc.

It looked right.

«COUNTDOWN '12 mngm
12
11
19
9
8

<«

But, it stopped a little too soon!

The stop rule had to be changed, but that was easy.
<EDIT COUNTDOWN
>8 IS /ANYNUMBER/ DIFF OF /LOWNUMBER/ AND 1
>END
COUNTDOWN DEFINED

Now it would work,

<COUNTDOWN 't12n mngn
12
11

ip

4+ N oow

- even with negative numbers!

+~COUNTDOWN "g" "-3m

At this point, his work ended. That's all there was time for

him to do.

-66-

,. [R
Report No. 1889 Bolt Beranek and Newman Inc.

3.3 The Lesson Materials

% The children's time in the course was mainly spent on working
through a series of about twenty lessons programmed in LOGO.
This section contains printouts of children's interactions with
each of these lesson programs. These typescripts have been
included in the report not merely for historical recording and
documentation of the work but because they give very specific
insights into the problems of teaching, and the experience of

. -learning, a formal language through a somewhat open-ended

§ mechanical presentation. The proscriptive parts of the material
1 incorporate a great number of problems "to make" as well as

] questions "to answer". Also, the later lessons require the
-children to write procedures on their own. Thus these lesson
interactions reveal something about the children, as well as
the teacher.

— ——

The content treated in the lessons is summarized as follows.

LESSON ONE. The command PRINT used with a literal
LESSON TWO. The operation WORD used with the PRINT command.
LESSON THREE. The operation SENTENCE used with the PRINT command.

LESSON FOUR. The two operations FIRST and LAST as applied to
words and sentences.

LESSON FIVE. The two operations BUTFIRST and BUTLAST as applied
to words and sentences.

LESSON MESSAGE. A secret message is decoded by exercising
the operations introduced in the previous lessons.

LESSON SIX. The CALL command: LOGO things and names. Practice
in naming and the use of names.

R T W

Report No. 1889 - " Bolt Beranek and Newman Inc.

LESSON SEVEN (TEACH-THE-COMPUTER). The command TO. Writing and

performing some simple procedures.
LESSON EIGHT (EXPLAIN). Debugging six simple procedures.

LESSON NINE. The operations COUNT, SUM, and DIFFERENCE reviewed.
(These operations were first taught orally during some
earlier periods at the terminal.)

LESSON TEN. A review of FIRST, LAST, BUTFIRST, BUTLAST, and
WORD. The answers are used to spell out another secret

message.

LESSON ELEVEN. Debugging practice with some pattern drawing
procedures.

LESSON TWELVE. Going from a procedure for doubling a specific
word to a general doubling procedure which can take any
word as its input.

REVIEW-1. Practice in simulating the operation of a procedure.

LESSON THIRTEEN (USEINPUT). Extending the number of inputs of
procedures.

LESSON FOURTEEN. Writing a procedure as a command, and as an

operation.

LESSON FIFTEEN. Eleven procedures illustrating strange and

funny inputs.

LESSON SIXTEEN. Practice in writing procedures. The effects of

several procedures are described in succession and sample

printed results are shown for each. The student attempts
% to write each of the procedures.

LESSON SEVENTEEN. Practice with the identity operation IS.

LESSON EIGHTEEN. Writing a general recursive procedure.

-68-=

Report No. 1889 Bolt Beranek and Newman Inc.

The interactions are easy to read through. We have underscored
all of the children's typing to distinguish it from the
computer's, and have incorporated occasional expository comments
(in parentheses) particularly in the later lessons.

These lessons were written in LOGO. The LOGO programs for Lesson
ONE and Lesson EIGHTEEN, the first and last in the series, are

reproduced and discussed at the end of this section.

~LESSON!
IN THIS LESSON THERE ARKE SUME LINES TO FEADe THE COMPUTER TYPES VERY
FAaSTe IT WILL STOP EVERY SO OFTEN SO THAT YO!U wILL HAVE TIME TO READ «
HEN YOU WANT IT TO GO ONs PKESS THE RETURN KKY. 2

THIS MAKK & MEANS THAT THE COMPUTER HAS MOKE TO TELL YQlle PRESS THE
RETIIEN KEY LHEN YOU ARE READY TO READ IT. @

ThE COMPUTER (INDERSTANDS SOME SPECIAL COMMANDS. THE FIRST ONE WE WILL
T ALK ABOUT IS == Pic[NTe @

LET*S TELL THE COMPUTEK TO PRINT A WORDe 1 WILL TYPE THE COMMAND. YOU
PRELSS THE FETURN XKEY WHEN I AM FINISHED.

i INT "CABRAGE*
CAHRBACGE

NOW LET'S TELL ThE COMPUTER TO PRINT A SENTENCE. YOU PRESS ThHE KETUKN
Y THIS TIME Tul)e

PINT DO YO LIKE THE BEATLES?*
DO YOU LIKE THE REATLES?

NOTICE THAT THERE WERE QUOTATION €') MARKS AROUND THE EXACT WORDS THE
COMPUTER wAS ASKED TO PRINT. o

NOW TKY TO MAKE THE COMPUTER PRINT SOME OF YOUK OWN THINGS. @

DON'T WORRY ABOUT MAKING MISTAKES! WE ALL DO IT! THE COMPUTER GI1LL TKY
TO HELF YOU RY EXPLAINING WHAT WENT WRONG. @

HAVE FUN!

-

~69-

Report No, 1889 Bolt Beranek and Newman Inc.

~LES50NZ
REMEMBER == THE MARK @ MEANS THAT I AM WAITING FOR YOU TO PRESS THE
RRETURN KEY. @

AFTER YOU LEARN TO USE LOGO» YOU WILL BE ABLE T TEACH THE COMPUTER TO
M NEW THINGS. @

YOU WILL TEACH THE COMPUTER TO DO SOMETHING NEW BY WRITING A PROCEDUKE.
@

A PROCEDURE IS LIKE A RECIPEe IT HAS ALL THE INGKREDIENTS AND DIRECT IONS
IN IT TO MAKE SOMETHING. @

A FEW PROCEDUKES ARE ALREADY BUILT INTO LOGO. WE WILL TALK ABOUT THESE
HFORE WE TALXK ABOUT PROCEDURES THAT YOU WILL WRITE. ©

THE FFROCEDURE WE WILL LEARN ABOUT IN THIS LESSON IS CALLED <= WORDo
LET'S SEE WHAT IT DOES. ©

TYPE THESE WORDS =-- PRINT VWORD OF 'UP' AND *"DOWN*

*PRINT_KORD_ OF *'UP™ AND “'DOWN"

UPDOWN

HERE IS ANOTHER EXAMPLE OF WHAT == WORD == DOES.

TYPE THIS: PRINT WORD OF 'TREE® AND °'TOP'

*PRINT WORD OF “TRESZ" AND “TOP®

TREETOP

NOW LET®S SEE HOW GOOD A COMPUTER YOU WOULD BE. @

WHEN YOU SEE THE ARROWs TYPE =~ PRACTICE.

P

~PRACT ICE

PRETEND YOU ARE THE COMPUTER. I WILL TYPE AN INSTRUCTION. YOU TYrE IN
THE ANSWER THE COMPUTER WOULD GIVE. 0

PRINT WORD OF ''LA' AND 'LA"

- wrpwn

PRINT WORD OF '*123" AND *'4"
*1234
BRAVO! ON TO THE NEXT ONE! @

~70=

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT VORD OF “BE' AND 'ARD"
*BEARD
GOOD FOR YOU. HEFE'S THE FOUKTH UNE. @

PRINT WORD OF 'GOOD=-" AND "BYE"
*GOOD =BYE
*IGHT YOU AREe ONE MORE TO GO« @

PRINT WORD OF 'E' AND YORD OF N AND *D"

-ane

SO LONG FOR NOW.

'S

~LESSON3

b swiiens semm

ANOTHER BUILT-IN LOGO PROCEDURE IS¢ SENTENCE. @

TYPE THESE WORDS =-- PRINT SENTENCE OF "GIKLS' AND "LAUGH"
WRINT SENTENCE _OF "GIRLS' AND "LAUGH"
GIRLS LAUGH

-

AS YOU SEE, SENTENCE PUTS TWO LOGO THINGS TOGRETHER WITH A SPACE
BETWEEN. @

WHAT DO YOU THINK THE COMPUTER WOULD DO WITH THE NEXT INSTRUCT ION? TYPE
IN JUST THE ANSWER THE COMPUTER WOULD GIVE. @

Pk INT SENTENCE OF "ROYS® AND 'PLAY"

*BOYS PLAY

GOOD FOR YOUle

HERE IS ANOTHER ONEe. WHAT WOULD YO!U REPLY?

PRINT SENTENCE OF '"I LIKE' AND '"ICE CREAM®

¥ LIKE ICE CrEAM

kRTGHT YOU AFRE .

THE PROCEDURE == SENTENCE == WILL PUT TOGETHER ONLY TWO LOGO THINGS AT
A TIME. @

LOOK AT WHAT YOU MUST DO TO HAVE THE COMPUTER PUT TOGETHER THKEE
THINGS. @

TYRPE THIS: PRINT SENTENCE OF '"I'* AND SENTENCE OF "LIKE' AND “CANDY'
*PKINT SENTENGE OF “I' AND SENTENCE OF “LIKE™ AND_"CANDY"
I LIKE CANDY o

NOV TRY TO MAKE SOME SENTENCES OF YOUR OWNs WHEN YOU SEE THE ARKOY.

-

SR A S D e ST M S

Report No. 1889 Bolt Beranek and Newman Inc.
«LESSON4
TYPE THIS: PRINT FIRST OF °PURPLE"
PRINT FIRST OF "PURPLE
o
NOW TYPE THIS: PRINT FIRST OF "TREE"
*PRINT _FIRST OF “TREE"
T

TYPE THESE VWORDS AND LOOK VERY CAREFULLY AT THE COWPUTER'S ANSWER:
P% INT FIRST OF “SHE SELLS SEA SHELLS"

#P ¢ INT FIRST OF “SHE SELLS SEA SHELLS"

SHE

I'LL BET YOU EXPECTED TO SE& 'S* INSTEAD OF °'SHE's @

THE PROCEDURE == FIRST =-- TELLS THE COMPUTER T0Q OQUTPUT THE FIRST LETTER
I THE INPUT IS A WORDe IT TELLS THE COMPUTER TO OUTPUT THE FIKST WOXD
I'F THE INPUT IS A SENTENCE. @

NOW LET'S LOOK AT ANOTHEF FROCEDURE CALLED == LAST. ©

TYPE THIS: PRINT LAST OF “FOO"

#PRINT LAST OF "F0O0"

0

HERE 1S ANOTHER ONE TO TYPE: PRINT LAST OF "KETGHUP'
#PFINT_LAST OF “KETCHUP'

P

HEKF IS THE LAST ONE: PRINT LAST OF "UP, UP, AND AWAY"
*PRINT LAST OF “UP, UP, AND AWAY"

ALAY

NOW TELL THE COMPUTER TO DO SOME THINGS OF YOUR OWN WITH FIRST AND
LAST.

-

-72-

(iR A0 AT S Sl £ ot e e

Report No. 1889 Bolt Beranek and Newman Inc.

~LESSONS

TYPE THESE WORDS == PRINT BUTFIRST OF "TICKLE"
¥PrINT BUTFIRST OF 'TICKLE"

ICKLE

NOw TRY THIS: PRINT BUTFIRST OF "SEESAW"
*¥PRKINT BUTFIRST OF "SEESAL

EESAW

BUTFIRST IS A PROCEDURE WHICH TELLS THE COMPUTEK TO OUTPUT EVERY LETTER
RJT THE FIRST LETTER OF A WORD. @

NO® LET'S SEE WHAT HAPPENS IF WE ASK FOK BUTFIRST OF A SENTENCE. @
TYPE THIS: PRINT BUTFIRST OF ' SNOOPY AND CHARLIE BROWN'

*2RINT BUTFIRST OF "SNOOPY AND CHARLIE BROWN"
AND CHARLIE BROWN

BUTFIRST TELLS THE CNOMPUTER TO OUTPUT EVERY WORD EXCEPT THE FIRST WORD
(F A SENTENCE. @ -

HERE IS STILL ANOTHER BUILT=IN LOGO PROCEDUFE == BUTLAST.0

TYPE THIS: PRINT BUTLAST OF "JEEPERS"
#PRINT BUTLAST OF “JEEPERS"
JEEPER

NOW TRY ANOTHER == PKINT HUTLAST OF “LUCY"
*PRINT BUTLAST OF “LUCY"
Luc

NOW TRY BUTLAST WITH A SENTENCE: PRINT BUTLAST OF “FEE FI FO FUM"
#RINT _BUTLAST OF “FEE FI FO _Fym"
FEE FI FO

NOY YOU ARE ON YOUR OWN FOR A WHILE. TRY LOTS OF YOUR OWN INSTRUCTIONS
W ITH WORD, SENTENCE, FIRST» LAST», BUTFIRST» AND BUTLAST.

[

=T 3=

Report No. 1889 Bolt Beranek and Newman Inc.

LESSON MESSAGE

I HAVE A MYSTERY MESSAGE FOR YOU. 1 WILL GIVE YOU THE MESSAGE WITH
DASHES WHICH STAND FOR THE LETTERS IN EACH WORDe PRESS THE RETURN KEY
W HEN YOU ARE READY FOR IT. '

YOU CAN CECODE THE MESSAGE BY PRETENDING YOU ARE THE COMPUTER.

WHEN YOU SEE THE *s TYPE IN THE ANSWER YOU THINK A COMPUTER WOULD GIVE.
1F YOU ARE READY FCR THE CHALLENGE, PRESS THE RETURN KEY.

PRINT LAST GF °'*DONKEY" ' '

Y-- - mo e o - - o - ao;meo e ee oooeoy - - - - oo - e ee - o -o g

PRINT WORD OF °'E' AND A"
*EA

Yo- c=c emeec = mco= cc= cEA=m-=- coosp o= —soc ooe- .- c==,

PRINT BUTFIRST OF °'RING*
*ING '

Yo= === ==ING = ==== ==« =EA==ING ====¢ == =c=c=c =cce == ===,

PRINT FIRST OF *"“JAMBOREE*
*J :

YOU ARE -OING - GOO- JO- =-EAR-ING -0GO. -E -0-E THIS IS FUN.

PRINT FIRST OF *"VWIGGLE"
*W

YOU ARE =-OING - GOO- JO- =-EAR-ING -0GO. WE -0-E THIS IS FUN.

PRINT LAST OF *BAWL'
L :

YOU ARE =OING - GOO- JO- LEAR-ING LOGO. WE -0-E THIS IS FUN.

 PRINT BUTLAST OF “AS"

*A

YOU ARE -0ING A GOO- JO- LEAR-ING LOGO. WE =0-E THIS IS FUN.

-7 4=

Report No. 1889 Bolt Beranek and Newman Inc.

«TEACHCALL (LESSON SIX)

UNTIL NOW YOU HAVE USED QUOTATION MARKS (** **) AROUND EACH INPUT TO TELL
T HE COMPUTER THE WORD OR SENTENCE TO USE. @

HERE IS AN EXAMPLE -- YOU TYPE: PRINT SENTENCE OF °*DATE" AND *TIME®"
* PRINT SENTENCE OF, "DATE" AND “TIME* . :
DATE TIME .

SOMETIMES WE DON'T USE QUOTATION MARKS. WE USE SLASHES INSTEAD. THE
SLASH MARKS HAVE A DIFFERENT MEANING. @ ~ :

YOU TYPE THIS: PRINT SENTENCE OF /DATE/ AND /TIME/
*PRINT SENTENCE OF /DATE/ AND /TIME/ o
372671969 12:43 PM

AS YOU CAN SEE» THERE IS A DIFFERENCE BETWEEN "DATE® AND /DATE/ AND
BETWEEN °*TIME' AND /TIME/. €

THE SLASH MARKS TELL THE COMPUTER THAT DATE IS A NAME FOR SOMETHING
ELSE, AND THAT TIME IS A NAME FOR SOMETHING ELSE. THE COMPUTER MUST
LOOK TO SEE IF IT HAS BEEN TAUGHT WHAT DATE STANDS FOR AND WHAT TIME
STANDS FOR. @

THE COMPUTER SHOWED THAT IT HAD ALREADY BEEN TAUGHT THAT DATE IS THE
NAME OF 372671969 AND THAT TIME IS A NAME FOR 12:43 PM. BUT YOU CAN
TEACH IT NEW NAMES FOR OTHEK THINGS. €

LET US TEACH THE COMPUTER THAT THE WORD °*GRRR" IS TO BE A NAME FOR THE
W ORD **GROWL'. @

FIRST WE TYPE IN THE WORD -~ CALL. THEN WE PRESS THE RETURN KEY. @
NOW THE COMPUTER WILL TYPE -- THING: THEN WE TYPE THE WORD TO BE
NAMED. IN THIS CASE WE ARE NAMI~G “GROWL'e THEN WE PRESS THE RETURN
KEY AGAIN. @

THE COMPUTER WILL THEN TYPE =-- NAME: THEN WE TYPE IN THE NAME WE ARE

GOING TO USE. IN THIS CASE IT 1S "GRRR". WHEN WE HAVE FINISHED THE
NAMING, WE HIT RETURN AGAIN. @

LET ME DO THIS FOR YOU SO YOU CAN SEE HOW IT WORKS.e

CALL
THING: °*GROWL'
NAME: °**GRRR*

-75=

Report No. 1889 Bolt Beranek and Newman Inc.

NOW YOU TYPE THIS: PRINT /GRRR/
*PRINT /GRRR/ -
GROWL

DID YOU NOTICE THAT WE PUT QUOTATION MARKS AROUND THE THING WE NAMED
AND AROUND THE NAME WE USED? @

HERE IS ANOTHER ONE. BUT BEFORE WE DC THIS, YOU TRY A TEST. YOU TYPE:
PRINT /SNOOPY/
*PRINT /SNOOPY/

- i i e

DID YOU SEE THAT THE COMPUTER RETURNED EMPTY. IT DOESN°'T KNOW WHAT
SNOOPY IS A NAME FOR BECAUSE WE HAVEN'T TAUGHT IT YET.

NOW LET*'S MAKE SNOOPY THE NAME OF SOMETHING. €@
CALL

THING: "DOG"
NAME: **SNOOPY"

NOW YOU TYPE: PRINT /SNOOPY/
*PRINT /SNOOPY/ |
DOG

‘NOW TRY TO NAME A WORD OR SENTENCE OF YOUR OWN.
REMEMBER, WHEN YOU SEE %, TYPE CALL AND PRESS THE RETURN KEY.

*CALL

THING' "LADY"

NAME- **"MRS.BLOOM* '
NOW TEST BY ASKING THE COMPUTER TO PRINT THE NAME YOU HAVE GIVEN IT,
WITH SLASH MARKS AROQUND IT.

*PRINT __/MRS.BLOOM/
LADY

NOW TRY SOME OF THESE ON YGUR OWN.
~CALL
THING: _ “ONE"
NAME: *""ONE HUNDRED"
*PRINT *"ONE HUNDRED®*
ONE HUNDRED

“PRINT /ONE HUNDRED/
ONE

-

o

Report No. 1889 Bolt Beranek and Newman Inc.

+<PRACTCALL

I HAVE JUST TAUGHT THE COMPUTER SOME NEW NAMES. HERE THEY ARE$

CALL CALL
THING: "GREEN" THING: “LEG"
NAME: "STRING BEANS" . NAME: "HOT DOG"
CALL CALL
THING: **BUMP" THING: *TWO"
NAME: “BASEBALL' NAME: “THREE"
CALL

THINGs °**SHEEP*
NAME: °**SUGAR®"

I AM GOING TO WRITE OUT SOME SENTENCES WITH SOME MISSING WORDS. @
YOU TYPE IN THE WORD WHICH SHOULD BE PUT IN THE BLANK SPACE SO THAT THE

S ENTENCE WILL MAKE SENSE. €
YOU MUST CHOOSE YOUR WORD FROM THE LIST ABOVE. @

i« ! HATE VEGETABLES BUT MY MOTHER MAKES ME EAT "~e=c«<-=" ANYWAY.
*STRING BEANS . ,

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:

1 HATE VEGETABLES BUT MY MOTHER MAKES ME EAT STRING BEANS ANYWAY.

2, HE FELL AND GOT A BIG /====~===/ ON HIS HEAD.
#«BUMP

HERE 1S THE SENTENCE YOU JUST MADE

HE FELL AND GOT A BIG ON HIS HEAD.

DOESN*T THIS SOUND FUNNY? PLEASE TRY AGAIN.

* BS\ASEBALL

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
HE FELL AND GOT A BIG BUMP ON HIS HEAD.

3. THE COLOR OF THE GRASS IS /<v==e===- /

* STRING BEANS

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
THE COLOR OF THE GRASS IS GREEN

~77=

Report No. 1889 Bolt Beranek and Newman Inc.

4. 1 ATE A "eowwcce- * WITH MUSTARD ON IT.

*HOT DOG | - | '

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
I ATE A HOT DOG WITH MUSTARD ON IT.

S« ONE AND ONE ARE /====-- T4

* THREE . ‘

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
ONE AND ONE ARE TWO '

6« HE SLIPPED ON THE ICE AND BROKE HIS /ewececce-- /o
#HOT DOG . '
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
HE SLIPPED ON THE ICE AND BROKE HIS LEG

7. THAT CHAIR HAS A WOBBLY “ee=wececat
*LEG . .

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:
THAT CHAIR HAS A WOBBLY LEG

8¢ SOME PEOPLE LIKE "==ee--=='" AND CREAM IN THEIR COFFEE.
* SUGAR
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:

. SOME PEOPLE LIKE SUGAR AND CREAM IN THEIR COFFEE.

9. LITTLE BO PEEP HAS LOST HER /==cecwe==/

* SUGAR
YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:

LITTLE BO PEEP HAS LOST HER SHEEP

10. THE RED SOX START PLAYING *"===--==-='" IN A FEW WEEKS.
*BASEBALL , o

YOU ARE ABSOLUTELY RIGHT. HERE IS YOUR SENTENCE:

THE RED SOX START PLAYING BASEBALL IN A FEW WEEKS.

THAT'S THE END OF MY LIST OF SENTENCESe. SEE YOU LATER.

- .

_78-

Report No. 1889 Bolt Beranek and Newman Inc.

« TEACH-THE-COMPUTER ~ (LESSON SEVEN)

THE COMPUTER ALREADY KNOWS ABOUT SOME PROCEDURES LIKE WORD, SENTENCE,
FIRST, BUTLAST AND SOME OTHERS WE HAVE LEARNED. @

NCOW LET'S TEACH IT SOMETHING NEW, THAT IT DOESN'T KNOW ALREADY. @

FIRST WE HAVE TO TELL IT THAT WE ARE GOING TO TiACH IT SOMETHING NEW. I
WILL SHOYW YOU HOW TO DO THIS. @ '

FIRST I WILL TYPE THE WORD - TO.

TO

THEN I WILL GIVE THE NEW PROCEDURE A NAME. THE NAME OF MY NEW PROCEDURE
IS SPELLCAT. e '

TO SPELLCAT

NOW I AM GOING TO TELL IT WHAT SPELLCAT IS SUPPOSED TO DO. I WANT
SPELLCAT TO DO THREE THINGS IN ORDER.®@

I WILL NUMBER EACH STEP SO THE COMPUTER WILL KNOW THE RIGHT ORDER TO DO
THESE THINGS. e

TO SPELLCAT
10 PRINT *'"C*
20 PRINT A"
30 PRINT *'T*

NOW I HAVE TOLD THE COMPUTER THE THREE THINGS WHICH SPELLCAT SHOULD DO.
e .

NOW I WILL TYPE END, TO LET THE COMPUTER KNOW I HAVE FINISHED TELLING
IT HOW TO SPELLCAT. @ ' '

TO SPELLCAT
13 PRINT ¢
20 PRINT At
30 PRINT °'*T"
END

-79-

= sy R —

Report No. 1889 Boit Beranek and Newman Inc.

THE COMPUTER WILL NOW TYPE BACK =-- SPELLLCAT DEFINED. IT IS TELLING ME
THAT IT NOW UNDERSTANDS SPELLCAT. €

HERE IS THE WAY IT WILL LOOK.

TO SPELLCAT

13 PRINT *C“

20 PRINT "A"

30 PRINT T"
END

SPELLCAT DEFINED

NOW LET*®*S TRY THIS PROCEDURE TO SEE WHAT IT WILL DO. YOU TYPE -
SPELLCAT.

* SPELLCAT

WOW TRY WRITING YOUR OUWN THInNGe HERE IS A SUGGESTION IF YOU NEED ONE. o

YOU MIGHT URITIE A PROCEDRUNE WHIUOH COUNTHS LIKE THIS:

ONE
THO
THREE
FOLR | ;
FIVE i3

GOOD LUCK. MOFE YOU TEAGH ME LOTS OF NEW FUN THINGS.
«TO NUMBER -
>10 PRINT Q' {
>20 PRINT "

> 30 PRIMTNANT “E" : -
>END | i

NUMBER DEFINED
< NUBNMBER “:
0 E
N v
& 1
n
9

y
if 3

20
-80~ 4
E
{
1

Report No. 1889 Bolt Beranek and Newman Inc.

~EXPLAIN (LESSON EIGHT)

HERE ARE SOME PROCEDURES THAT DON'T DO ALL THE THINGS THEY WERE
SUPPOSED TO DO. '

THERE ARE SIX PROCEDURES. HERE ARE THEIR TITLES:

JOKE

HOPSKIP
COUNT=-TO-FI VL
SPELLDOUN
REVCAT

REVDOG e

YOU ARE TO DO FIVE THINGS WITH EACH PROCEDURE: @

1. TRY OUT THE PROCEDURE BY TYPING ITS NAME. THIS WILL TELL YOU WHAT
THE PROCEDURE DOES NOW. @ :

2., TYPE THE PROCEDURE NAME AGAIN, BUT THIS TIME PUT A 1| AT THE END OF
THE NAME. EXAMPLE: JOKE1 - THIS WILL SHOW YOU WHAT THE PROCEDURE WAS
SUPPOSED TO DO. @

3. LIST THE PROCEDURE BY TYPING LIST eeeeee EXAMPLE: LIST REVDOGe THIS
W ILL LET YOU LOOK AT THE STEPS IN THE PROCEDURE SO YOU CAN SEE WHAT IS
M ISSING. @

4. EDIT THE PROCEDURE. YOU ARE TO CORRECT THE PROCEDURE TO MAKE IT
RIGHT. @

S TEST THE PROCEDURE YOU JUST WROTE TO SEE IF IT DOES WHAT IT WAS
SUPPOSED TO DO. @

JOKE

QUESTION: WHAT DID THE BIG CHIMNEY SAY TO THE LITTLE CHIMNEY?
~JOKE]

QUESTION: WHAT DID THE BIG CHIMNEY $SAY TO THE LITTLE CHIMNEY?
ANSWER: YOU'RE TOO YOUNG TO SMOKE.
~LIST JOKE
TO JOKE

égDPRINT "QUESTION: WHAT DID THE BIG CHIf.{EY SAY TO THE LITTLE CHIMNEY?"

«EDIT JOKE
>T1 PRINT*ANSER:YOU'RE TO YOUNG TO SMOKE.'

>END ~ T
JOKE DEFINED

«JOKE
QUEST]ON: WHAT DID THE BIG CHIMNEY SAY TO THE LITTLE CHIMNEY?

ANSER:YOU'RE TO YOUNG TO SMOKE.

-

_81-

Report No. 1889 Bolt Beranek and Newman Inc.

HOPSKIP | «LIST COUNT-TO=-FIVE
HOP
, TO COUNT-TO-FIVE
HOP 10 PRINT *"ONE"
HOP 30 PRINT *THREE"
«HOPSKIP1 ! S@ PRINT °**FIVE"
HOP END
HOP | ~EDIT_COUNT-TO-FIVE
>20 PRINT *TWO'
HOP : >40 PRINT "“FOUR'
- >END
‘ COUNT-TO-FIVE DEFINED
LIST HOPSKIP «COUNT=TO=FIVE
| ONE
TO HOPSKIP TWO
10 PRINT "HOP" , THREE
20 PRINT ** FOUR
30 PRINT 'HOP" . FIVE
5@ PRINT "HOP" ! -
END ‘

) [

«EDIT HOPSKIP T

>48 PRINT ™' ' REVCAT
>END T
HOPSKIP DEFINED | A
«HOPSKIP «REVCATI!
HO> T
{
A
HOP c
| -
HOP .
«COUNT-TO-FIVE | LIST REVCAT
ONE !
THREE TO REVCAT
FIVE 1@ PRINT LAST OF "CAT"
«COUNT=-TO-FIVE1 ! 2@ PRINT LAST OF RLITLAST OF "CAT"
ONE END
TWO |
THREE «EDIT REVCAT
FOUR >30 PRINT FIRSY\T OF "CAT"
FIVE a > END
REVCAT DEFINED
\ «REVCAT

‘,
\“
tODP>=-

_82.

Report No. 1889 Bolt Beranek and Newman Inc.

«USENUMBERS CLESSON NINE)D

THIS LESSON IS TO HELP YOU REVIEW SOME PROCEDURES CALLED COUNT, SuUM,
AND DI FFERENCF. @

TO MAKE THE TYPING EAleR: WE WILL USE THE ABBREVIATION FOR DIFFERENCE:
DIFF. @

PRETEND YOU ARE THE COMPUTER. GIVE THE ANSWER YOU THINK THE COMPUTER
WOULD GIVE, IN EACH CASE. @

PRINT COUNT OF °'BOP*

*3.
GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT COUNT OF “ELEPHANT"
* 7

NOT WHAT THE COMPUTER WOULD HAVE DONE. GIVE IT ANOTHER WHIRL.
*8 '

GOOD FOR YOU. HERE 1S THE NEXT ONE.

PRINT COUNT OF *“INDIANAPOLIS®
*12 |
GOOD FOR YOU. HERE 1S THE NEXT ONE.

PRINT COUNT OF *THIS MONTH IS APRIL."
*16

LOOK AGAIN, AND TRY AGAIN PLEASE

*4_

GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT COUNT OF "APRIL"
*5
GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT SUM OF *8' AND °7°*

.15

GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT SUM OF 20 AND *10n°

*300

1 DON*T THINK THE COMPUTER AGREES WITH YOU. PLEASE TRY AGAIN.
*120

GOOD FOR YOU. HERE IS THE NEXT ONE.

PRINT DIFF OF '*12" AND *'8*
* 4
GOOD FOR YOU. HERE IS THE NEXT ONE.

~83-

Report No. 1889 Bolt Beranek and Newman Inc.

«DECODE (LESSON TEN)D

HERE IS ANOTHER MESSAGE FOR YOU TO DECODE. @

----------------- - - - - -y - s e - e - - e s e -.-----' -------ﬂ--’

; PRETEND YOU ARE THE COMPUTER AND GIVE THE ANSWER YOU THINK THE COMPUTER
] W OULD GIVE.@

PRINT BUTFIRST OF BUTLAST OF ''HORN"

. *OR
{ <-cOR~0W == ==== === =0QR ===¢ === === ==e=- ==ceccc, ==--- conmny, ===y DR
- eeeommeoos OWQ
. PRINT BUTFIRST OF BUTLAST OF "FOUL"
. *0U
g cee0QR=0l == ==ce === =0R =0Us =0U === === ccc=-=-) ==m=- cmmmmy ===y, OR
' e QUecvnvrena Ol
. PRINT LAST OF "FLY"
] *Y
| ===0R=0W == ==== ==Y ~OR YOUs YOU =«= === =c-w==== s ===== Yeeomwme ===, OR
] « QU=enwen= ~0lle
PRINT WUORD OF FIRST OF *"IT'" AND LAST OF 'BOSS"
*1S
- =eOR=0W IS ==== ==Y =0R YAUe YOU === === Y mecmeee, ec=== Yemmw, ==w, OR
- OUmrecnca=- OWe
PRINT FIRST OF BUTFIRST OF “AGREE"
%G
ee=0/i=0W IS Geeon == Y «0R YOUe YOU === === Y enallueny =ve== Youmem, OR

“Oleenenaa(lle

PRINT BUTFIRST OF BUTFIRST OF '"IPLAN"

¢ AN

meeQReQW IS Ge== ==Y «OR YOUe YOU =AN «-=Y ~ANG=AN» vowmanfanmw, wen GR
- QUmwveone=(Ql.

PRINT BUTFIRST OF BUTLAST OF BUTLAST OF *SPLASH'
*PLA

TOMORKOW IS GAME DAY FOR YOU. YOU CAN PLAY HAMGMAN, THIRTY-ONE, NIMs, OR
FOUR~IN===ROWe.

PRINT FIRST OF LAST OF "THIS IS ALL."

*A

TOMORROW IS GAME DAY FOR YOU. YOU CAN PLAY HANGMAN, THIRTY=-ONE, NIMs OR
F OUR«IN=A~ROW. '
CONGRATULATIONS. YOU HAVE SOLVED THE MYSTERY. HAVE YOU DECIDED VWHAT YOU
WV ANT TO PLAY TOMORROW?

-

_8l-

Report No. 1889 Bolt Beranek and Newman Inc.

: «PRACTICE (LESSON ELEVEN)
i I AM GOING TO SHOW YOU SOME PROCEDURES WHICH NEED TO BE FI1XEDe I HOPE
: YOU CAN HELP ME. @ '

FIRST I WILL SHOW YOU WHAT THE PROCEDURE DOES.®@
b THEN I WILL LIST THE PROCEDURE. @

; THEN I WILL ASK FOR HELPe. YOU CAN HELP ME BY GIVING ME THE LINE NUMBER
? WHICH WILL ANSWER THE QUESTION. @

; HERE WE GO! IF YOU ARE PUZZLED, TRY A FEW AND YOU WILL SEE HOW THIS
1 WORKS. @ |

THE FIRST PROCEDURE IS CALLED SHRINKe. I WILL SHOW YOU WHAT IT DOES.

] SHRINK
: XXXXXXX
: XXKXXX
s XXX X

3 XXXX
XXX

X%

X

HERE IS A LISTING OF THE PROCEDURE.
LIST SHRINK

TO SHKINK

10 PRINT *"XXXXXAX'
20 PRINT ""XXXXXX'"
: 30 PRINT *""XXXX'"

4 40 PRINT " XXXX*

7 S PRINT *'XXX*

60 PRINT " XX*

76 PRINT X'

END

QUESTION: WHICH LINE SHOULD BE CHANGED SO THAT PATTERN WILL LOOK RIGHT?
* 30
THANK YOU. WILL YOU HELP ME ON THE NEXT ONE?

-85~

Report No. 1889

HERE IS ANOTHE!?

SAW
X

XX
XXX
XXXX
XXX
XX

X

XX

HERE IS A LISTING OF SAW.

LIST SAW

TO SAW

10 PRINT
20 PRINT
30 PRINT
40 PRINT
S5A PRINT
60 PRINT
70 PRINT
80 PRINT
90 PRINT
100 PRINT
110 PRINT
120 PRINT
130 PRINT
140 PRINT
150 PRINT
160 PRINT
170 PRINT
180 PRINT
190 PRINT

"x"

"xx..

"xxx.'

YXXXX"

"xxx.'

"xx.'

"x.'

0

"x.'
"XX"
"xx‘f:"
PXXXX"
"Xxx.'
"xxn
"x.'
"x.'
"xx"
"xxx.'

< PROCEDURE CALLED SAW.

~86-

Bolt Beranek and Newman Inc.

Report No. 1889 Bolt Beranek and Newman Inc.

200 PRINT *"XXXX'
210 PRINT " XXX
1 220 PRINT "XX"
230 PRINT "X*"
END

QUESTION: WHICH LINES WOULD YOU ERASE SO THAT THE DESIGN WILL BE JOINED
TOGETHER LIKE A REAL SAW?

*80 160
THANKS AGAIN. YOU ARE A GREAT HELP.

HERE IS THE THIRD PROCEDUREe. IT IS CALLED ALPHABETICAL.

ALPHABETICAL
ALAN

BILL

DAVID

GEORGE

FRED

LIST ALPHABETICAL

TO ALPHABETICAL
10 PRINT '"ALAN"
20 PRINT "BILL"
30 PRINT '"DAVID"
40 PRINT "“GEORGE"
SO PRINT "FRED'"
END

I HAVE THREE QUESTIONS ABOUT THIS PROCEDUREe THE FIRST IS =-- WHICH LINE
1S OUT OF ORDER? ‘

*50,

THAT'S GOOD, THANKS.

QUESTION o: WHAT NUMBER WOULD YOU GIVE THAT LINE TO PUT IT IN THE RIGHT

PLACE?
* 39
YOU'RE SO RIGHT. HERE'S QUESTION 3: WHAT NUMBER WOULD YOU GIVE TO THE

INSTRUCTION - PRINT *CHARLES"
*21

THANK YOU FOR YOUR HMELP. YOU COULD HELP ME EVEN MORE IF YOU HAVE TIME,
BY MAKING THE CORRECTIONS FOR ME IN EACH OF THE PNOCEDURES:

-

~87-

Report No. 1889 Bolt Beranek and Newman Inc.

«REVIEW

HERE IS A PROCEDURE WITH SEVERAL INSTRUCTIONS. THE PROCEDURE IS CALLED
- REVIEW-1. @

I WILL LIST THE PROCEDURE - REVIEW-1 - FOR YOU, WHEN YOU ARE READY. @

TO REVIEW-1}

19 PRINT °**COMPUTER"

20 PRINT *"LOGO IS A COMPUTER LANGUAGE"
30 PRINT FIRST OF '"COMPUTER®"

40 PRINT LAST OF '*COMPUTER"

S6 PRINT BUTFIRST OF "COMPUTER"

6@ PRINT BUTLAST OF °‘COMPUTER"

70 PRINT FIRST OF "COMPUTER LANGUAGE"
89 PRINT LAST OF *COMPUTER LANGUAGE®
END

PRETEND YOU ARE THE COMPUTER. I WILL ASK YOU A QUESTION ABOUT EACH
LINE. TELL ME WHAT YOU WOULD ANSWER. @

READY? HERE WE GO.
WHAT SHOULD THE COMPUTER ANSWER WHEN IT READS LINE 10?
* COMPUTER

GOOD. NOW WHAT WOULD IT DO WITH LINE 20?
¥1.0GO IS A COMPUTER LANGUAGE

GREAT! NOW, HOW ABOUT LINE 38?
*C

WHAT VWOULD YOU DO WITH LINE 40?
*R

GOOD FOR YOU! NOW TRY LINE 50.
*OMPUTER

-88-~

. roo—-«-;; P L

Report No. 1889 Bolt Beranek and Newman Inc.

VERY GOOD. LOOK NOW AT LINE 60.
* P _
SOMETHING IS NOT RIGHTe. TRY AGAIN. |
* COMPUTE i

NOW FOR LINE 70
¥ COMPUTER

HOW ABOUT THE LAST ONE, LINE 80?
* LANGUAGE

NOW THAT YOU KNOW WHAT EACH LINE OF THE PROCEDURE SHOULD DO, TRY OUT

THE PROCEDURE AND SEE WHAT HAPPENS. IN ORDER TO TRY OUT THIS PROCEDURE,

JUST TYPE ITS NAME.

*L0GO E
3 THAT DOESN'T SEEM TO BE QUITE RIGHT. TRY AGAIN. i
1 *REVIEW-1 ' h
COMPUTER
LOGO IS A COMPUTER LANGUAGE
C

; OMPUTER i
ﬁ COMPUTE 5
COMPUTER
LANGUAGE

N L S TE o

? IF YOU HAVE MORE TIME, TRY ADDING A FEW LINES TO THIS PROCEDURE.

-

g

~ EDIT REVIEW=] ‘
>97 PRIMMNT FIRST OF LOGOWWANMNAN''LOGO" i
>100 PRINT BUTFIRST OF LOGON\\\"LOGO"_ _ 1
> END !
REVIEW-1 DEFINED
«REVIEW=-1
COMPUTER «
LOGO IS A COMPUTER LANGUAGE]
C
R E
OMPUTER e 15
COMPUTE |
COMPUTER]
LANGUAGE | |
L
0GO

-

-89

Report No. 1889 Bolt Beranek and Newman Inc.

«LLEARNDOUBLE C(LESSON TWELVE)

HERE IS A PROCEDURE WHICH WILL PRINT DOUBLE THE WORD - **CAT" @

WHEN YOU ARE READY, I WILL TRY THE PROCEDURE FOR YOU. THEN I WILL SHOW
IT TO YOU. e '

DOUBLECAT
CATCAT

LIST DOUBLECAT

TO DOUBLECAT
10 PRINT WORD OF 'CAT'* AND ''CAT"
END

e

NOW IT®*S YOUR TURNe. YOU CAN RUN DOUBLECAT YOURSELF IF YOU LIKL. THEN
TRY TO WRITE YOUR OWN PROCEDURE - DOUBLEDOG. @

WHEN YOU ARE SURE DOUBLEDOG WORKS, TYPE - MORE - AND YOU WILL GET MORE
I NSTRUCTIONS.

«TO DOUBLEDOG

>20 PRINY\T WORD OF ''DOG' AND 'DOG'"

>END

DOUBLEDOG DEFINED

~DOUBLEDOG

DOGDOG

- MORE

THIS TIME WRITE A PROCEDURE WHICH WILL DOUBLE "HA". YOU CAN CALL IT
DOUBLEHA IF YOU WISH. WHEN YOU KNOW IT WORKS, TYPE - MORE - AGAIN.
«TO DOUBLEHA ‘
>70 PRINT WORD OF 'HA"™ AND "HA"

>END

DOUBLEHA DEFINED

-~ DOUBLEHA

HAHA

«MORE

NOW WRITE A PROCEDURE WHICH WILL DOUBLE YOUR NAME. FOR EXAMPLE, IF MY
NAME WERE JOE, I WOULD CALL MY PROCEDURE DOUBLEJOE. WHEN YOU ARE SURE
YOUR PROCEDURE WORKS, TYPE - NEWIDEA.

«TO_DOUBLERUTH=-ANNE

>90P PRINT WORD OF “RUTH-ANNE' AND "RUTH=-ANNE'

> END - ‘

DOUBLERUTH~ANNE DEFINED

«DOUBLERUTH=-ANNE

RUTH-ANNERUTH-ANNE

-90-

Report No. 1889 Bolt Beranek and Newman Inc.

«NEWIDEA

DOESN'T IT SEEM LIKE A LOT OF WORK TO HAVE TO WRITE A NEW PROCEDURE
EVERY TIME WE WANT TO DOUBLE A WORD? @

IT CERTAINLY WOULD BE EASIER IF WE HAD ONE PROCEDURE WHICH WOULD DOUBLE
ANY WORD WE GAVE IT. WE CAN WRITE ONE. SO LET*'S! @

THE SECRET IS TO USE A NAME WHICH WILL STAND FOR ANY WORD WE WANT. @
HERE IS THE PROCEDURE:

LIST DOUBLE

TO DOUBLE /ANYWORD/

19 PRINT WORD OF /ANYWORD/ AND /ANYWORD/
END

NOW YOU TYPE - DOUBLE ''CAT"
*DOUBLE "CAT"
CATCAT

WHEREVER ZANYWORD/ APPEARS IN THE PROCEDURE, “ANYWORD' BECOMES THE WNAME
OF "CAT"

NOW TRY DOUBLE WITH LOTS OF OTHEk WORDS AND SEE WHAT HAPFENS. WHEN YOU
ARE READY TO TRY SOMETHING NEW, TYPE - SUGGESTION.

«DOUBLE "HE IS A NICE BOY'

YyOU CAN'T MAKE A WOKD OUT OF A SENTENCE. (LOGO complains to the student)

I WAS AT LINE 10 IN DOURBLE. (But, of course, he accepts the
«DOUBLE **HE INNISANICEBOY' challenge. He gives LOGO an accept-
HEI SANI CEBOYHEI SANI CEBCY able word by squeezing together the
« SUGGESTION words in his sentence.)

TRY WRITING A NEW PROCEDURE CALLED DOUBLEFIRST. @

DOUBLEFIRST WILL DOUBLE THE FIRST LETTEK OF THE WORD YOU GIVE IT AS
INPUT. @

FOR EXAMPLE, IF YOU TELL IT - DOUBLEFIRST '"JOE' IT WILL REPLY - JJOE. @

«TO DOUBLEFIRST

>10 PRINT WORD OF FIRST OF /ANYWORD/ AND /ANYHWORD/
> END AR R -t
DOUBLEFIRST DEFINED

«DOUBLEFIRST QF *'JJM*
JJIM

~91-

O T

e — s T

[e e e 3

jardaatd peaEN Ty e TR AT
: . e

Report No. 1889 Bolt Beranek and Newman Inc.

«USEINPUT CLESSON THIRTEEN)

HERE IS A PROCEDURE YOU MAY HAVE SEEN BEFOREe. I WILL LIST IT FOK YOUf e

TO JOHN

12 PRINT *"JOHN IS MY FRIEND.®

20 PRINT *JOHN GOES TO EMERSON SCHOOL."'
39 PRINT "JOHN IS IN GRADE THREE." '
4% PRINT "JOHN IS VERY SMARTe"

END

IN ORDER TO MAKE THE PROCEDURE -~ JGHN - WORK, ALL YOU MUST DO IS TYPE
-JOHN. TRY IT.

* JOHN

JOHN IS MY FRIEND.

JOHN GOES TO EMERSON SCHOOL.
JOHN IS IN GRADE THREE.

JOHN IS VERY SMART.

HERE IS ANOTHER PROCEDURE CALLED - ADDONe. I WILL LIST IT FOR YOU WHEN
YOU ARE READY. @ '

TO ADDON /WHC/

10 PRINT SENTENCE OF /WHO/ AND IS MY FRIEND."

20 PRINT SENTENCE OF /¥WHO/ AND "GOES TO EMERSON SCHOOL.'
3% PRINT SENTENCE OF /WHO/ AND IS IN GRADE THREE"

49 PRINT SENTENCE OF /WHO/ AND °''IS VERY SMART" §
END 3

IN ORDER TO MAKE THIS PROCEDURE WORK, YOU MUST TYPE IN THE NAME OF THE 4
PROCEDURE AND SOMETHING ELSE. @ ’

YOU MUST TELL THE COMPUTER WHAT /WHO/ ISe. YOU MUST TELL IT WHAT THING
THE NAME "UWHO' STANDS FOR. @

FOR EXAMPLE, IF YOU VWANT THE NAME *"WHO' TO STAND FOR "JOHN" THEN YOU
MUST TYPE =~ ADDON *'JOHN'

YOU TYPE -- ADDON '"JOHN' =-- AND SEE WHAT HAPPENS.

* ADDON **JOHN'* ;
JOHN IS MY FRIEND. §
JOHN GOES TO EMERSON SCHOOL. ‘ .
JOHN IS IN GRADE THREE 1
JOHN IS VERY SMART |

NOW TRY ANOTHER INSTRUCTION OF YOUR OWN USING ADDON AND ANY INPUT YOU 4
WANT .

~-92~ ?

R T~ et) —r IR T -

Report No. 1889 Bolt Beranek and Newman Inc.

*ADDON " TOMMY"" ;
TOMMY IS MY FRIEND. |
TOMMY GOES TO EMERSON SCHOOL.
TOMMY IS IN GRADE THREE

TOMMY IS VERY SMART

TRY ONE MORE.

%*ADDON_"RUTH"

RUTH IS MY FRIEND.

RUTH GOES TO EMERSON SCHOOL.
RUTH IS IN GRADE THREE

RUTH IS VERY SMART

1 NOW WE HAVE LOOKED AT TWO PROCEDURES.
4 THE FIRST ONE = JOHN - HAS NO INPUTS. WE JUST TYPE THE NAME OF THE
] PROCEDURE TO MAKE .IT WORK. . ' -
THE SECOND.ONE = ADDON - TAKES ONE INPUT. WE MUST TELL THE COMPUTER
WHAT THE NAME STANDS FORe. '
NOW LET US LOOK AT A THIRD PROCEDURE. @
TO ADDMORE /WHO/ AND /WHERE/
3 10 PRINT SENTENCE OF /WHO/ AND "IS MY FRIEND." ,
! 20 PRINT SENTENCE OF /WHO/ AND SENTENCE OF "GOES TO'" AND /WHERE/
] 33 PRINT SENTENCE OF ,/WHO/ AND 'IS IN GRADE THREE.")

g 40 PRINT SENTENCE OF /WHO/ AND "IS VERY SMART."
1 END ‘

YOU CAN SEFE THAT THIS FROCEDURE NEEDS TWO INPUTS. YOU MUST TELL IT WHAT
1 "1JHO' STANDS FOR AND WHAT "WHERE'" STANDS FOR. @

IN ORDER TO MAKE THIS PROCEDURE WORK, YOU MUST GIVE IT AN INSTRUCTION
LIKE THIS =-- ADDMORE '"JOHN' **ANGIER SCHOOL"
YOU TRY THIS AND SEE WHAT HAPPENS.

* ADDMORE "'JOHN' “ANGIER SCOON\HOOL'" g
JOHN IS MY FRIEND. :
JOHN GOES TO ANGIER SCHOOL

JOHN IS IN GRADE THREE.

JOHN IS VERY SMART. '

WHEN YOU SEE THE ARROW, TRY SOME OTHER INPUTS WITH THIS PROCEDURE. @

-93-

Report No. 1889 Bolt Beranek and Newman Inc.

~PRRT CLESSON FOURTEEN)

THERE ARE TWO WAYS TO WRITE THE PROCEDURE - DOUBLE. WE HAVE ALREADY
WORKED WITH ONE OF THESE WAYS. HERE IT IS. @

1 TO DOUBLE~-1 /ANYWORD/
10 PRINT WORD OF /ANYWORD/ AND /ANYWORD/
END

TEST DOUBLE-1 TO SEE IF IT WORKS.

*DOUBLE-1 '"SET"
SETSET

NOW LOOK AT ANOTHER PROCEDUKE WHICH WILL DO WHAT DOUBLE DOES, WHEN YOU
GIVE IT THE RIGHT INSTRUCTION. @

TO DOUBLE=-2 /ANYWORD/
3 10 RETURN WORD OF /ANYWORD/ AND /ANYWORD/
: END

LOOK VERY CAREFULLY AT THIS PROCEDURE TO FIND OUT HOW IT IS DIFFERENT
FROM DOUBLE-1. @

DID YOU NOTICE THAT DOUBLE-~1 SAYS *'PRINT®' WHILE DOUBLE-2 SAYS °'RETURN®?
; *RETURN' TELLS THE COMPUTER =- BRING SOMETHING BACK TO ME =-- BUT IT DOES
] NOT TELL THE COMPUTER TO WRITE ANYTHINGe. @

HERE ARE SOME EXAMPLES OF HOW THE WORD °'RETURN'® MAKES A DIFFERENCE « @

3 YOU TYPE -~ DOUBLE-2 "BOOK"
% *DOUBLE-2 "BOOK"' g

YOU SAW THAT THE COMPUTER DID NOT PRINT A REPLY. IT DID RETURN AN v
ANSWER WHICH YOU CANNOT SEE. @ p

WE CAN GET IT TO PRINT THIS ANSWER BY TYPING - PRINT DOUBLE=-2 ''BOOK" .
TRY THIS AND SEE.

*PRINT DOUBLE-2 "BOOK" ;
BOOKBOOK _ j

—9l-

ettt pooem ey P

Report No. 1889 Bolt Beranek and Newman Inc.

NOW YOU CAN SEE THAT DOUBLE-1 AND DOUBLE=-2 WILL DO THE SAME THING.
HOWEVER YOU MUST ASK THE COMPUTER TO PRINT DOUBLE-2 TO GET IT TO WRITE
OUT AN ANSWER. DOUBLE-1 HAS THE PRINT COMMAND IN ITS PROCEDURE, SO YOU
DO NOT HAVE TO ASK IT PRINT. @

YOU MUST BE WONDERING WHY WE SHOULD BOTHER TO USE °'RETURN' AT ALL. IT
DOES SEEM EASIER TO WRITE PROCEDURES LIKE DOUBLE-1. WHEN YOU DO THE
NEXT LESSON, YOU WILL SEE WHAT THE DIFFERENCE IS, AND WHY WE NEED TO
USE °*RETURN® MOST OF THE TIME, RATHER THAN 'PRINT' IN OUR PROCEDURES.

~DOUBLE-1 DOUBLE-1_''DOG (This didn't work as expected - the
NDOGDOG procedure DOUBLE-1 does not return

it answer - it merely prints it.)
«PRINT DOUBLE-2 DOUBLE-2 "D0OG" (But this one works! The procedure
DOGDOGDOGDOG DOUBLE~2 when performed on "DOG"
- pefawns 1t answer "DOGDOG" as input
Lo the fivet LOUBRLE-2, which returns
Lta angw e, "oaLeiDOGDOG", to PRINT
which -: .. ‘r%e it.)

~95-

) § - RIS YR T LA T . - o

S)

Report No. 1889 Bolt Beranek and Newman Inc.

«USE C(LESSON FIFTEEN)
I AM GOING TO SHOW YOU SOME PROCEDURES AND ASK YOU TO PRETEND TO BE THE

COMPUTER. @
HERE IS THE FIRST PROCEDURE.
LIST MYSTERY~1

TO MYSTERY=-1 /ANYWORD/
19 PRINT WORD OF BUTFIRST OF /ANYWORD/ AND FIRST OF /ANYWORD/

END

IF YOl WERE THE COMPUTER, WHAT VWOULD YOU ANSWER IF YOU WERE GIVEN THIS
INSTRUCTION:

MYSTERY=-1 **SOAK®

* SOAK

PLEASE TRY AGAIN.

*0AKS

GREAT! HEKRE 1S THE NEXT QUESTION. WHAT WOULD YOU ANSWER TO THIS
INSTRUCTION:

MYSTERY=-1 312"

*123

RIGHT! HERE IS THE LAST QUESTION ABOUT THIS PROCEDURE. WHAT WOULD YOU
ANSWER?

MYSTERY=-1 "EAR"

*ARE

GOOD FOR YOUe. NOW LET®'S LOOK AT ANOTHER PROCEDURE.
LIST MYSTERY=-2

TO MYSTERY=-2 /FIRST WORD/ AND /SECOND WORD/
10 PRINT WORD OF /SECOND WORD/ AND /FIRST WORD/

END

THE FIRST QUESTION:
MYSTERY=-2 "AT" AND *"BE"
*BEAT

RIGHT! NEXT QUESTION:
MYSTERY=2 '"12" AND *24"
*2412

-96-

Report No. 1889 Bolt Beranek and Newman Inc.

YES! NOW TRY THIS ONE:
MYSTERY=-2 'EN'' AND ''D"
*DEN

GOOD! NOW HERE IS THE THIRD PROCEDURE:

LIST MYSTERY-3

TO MYSTERY-3 /FIRST NUMBER/ AND /SECOND NUMBER/ AND /SIGN/
18 PRINT WORD OF /FIRST NUMBER/ AND WORD OF /SIGN/ AND /SECOND NUMBER/

END

FIRST QUESTION:
MYSTERY=3 "S" AND '"9° AND "'+
*5+9

GREAT! SECOND QUESTION:

MYSTERY=3 '6' AND *1Z' AND '=°
*6-12

RIGHT! HERE IS THE LAST QUESTION:
MYSTERY=-3 '"1'" AND 2" AND '"'/°*

*1/72

NOW THAT YOU HAVE DONE SO WELL ON THIS GROUPs TYPE -~ NEXT =-- TO GET
ANOTHER SET OF MYSTERY PROCEDURESe.

«NEXT

I HAVE THREE MYSTERY PROCEDURES == MYSTERY=-4, MYSTERY-5, AND MYSTERY=6.
e

FIRST YOU ARE TO LIST MYSTERY=-4. @
THEN YOU ARE TO TRY MYSTERY-4 WITH YOUR OWN INPUTS. @

WHEN YOU ARE SURE THAT YOU CAN GET MYSTERY=~4 TO WORK WITHOUT ANY
COMPLAINTS FROM THE COMPUTER, DO THE SAME THING WITH MYSTERY-5. @

FINALLY, WHEN MYSTERY-S WORKS, DO THE SAME THING WITH MYSTERY=-6. @

GOOD LUCK! WHEN YOU HAVE FINISHED, TYPE =-- SURPRISE =-- FOR SOME FUN.
+ SURPRI SE '

1 HAVE FIVE MORE SHORT MYSTERY PROCEDURES FOR YOU. THEY ARE CALLED
SURPRISE=1, SURPRISE-2, SURPRISE-3, SURPRISE-4, AND SURPRISE-5. @

I HAVE HIDDEN THEM SO YOU CANNOT SEE THE INSTRUCTIONS OF EACH
PROCEDURE. BUT I WILL LET YOU LOOK AT THE TITLES. @

Report No. 1889 Bolt Beranek and Newman Inc.

TO SEE WHAT EACH SURPRISE PROCEDURE WILL DO, YOU MUST FIRST LIST THE
PROCEDURE« JUST TYPE, FOR EXAMPLE, =- LIST SURPRISE-1.@

THEN TRY OUT PROCEDURE - SURPRISE-1 - WITH THE RIGHT INSTRUCTIONS, AND
YOU WILL SEE WHAT IT DOES. @

AFTER SURPRISE-1 WORKS FOR YOU, TRY SURPRISE-2, SURPRISE-3, SURFRISE=-4,
AND SURPRISE=Se. HAVE FUN!
«LIST SURFRISE-~-1

TO SURPRISE-1 /BOY'S NAME/ AND /GIRL'S NAME/ (only the title line,
which lists the input
names, is visible)

« SURPRISE~1 *LISA'" *"TONY*

LISA LIKES TONY

*LIST SURPRISE=2

TO SURPRISE~-2 /YOUR FIRST NAME/ AND /ONE KIND OF FOOD/

«SURPRISE=2 ''JAY' *"PIZZA"
JAY'S FAVORITE FOOD IS Pizza
~SURPRISE-2 *JAY' '"CHINESE FOOD"
JAY'S FAVORITE FOOD 1S CHINESE FOQOD

«LIST SURPRISE=-3

TO SURPRISE-3

OTIME IS NOW 1248 P
LIST SURPRISE-4

TO SUKPRISE=-4 /YOUR LAST NAME/

«%UﬁfRISE-A "RORGES" (It's not at all likely, from this
SECRED sinple trial of SURPRISE~Y4 that the
LIST SURPRISE-S student could "see what it does")

TO SURPRISE=S /FIRST NUMBER/ AND /SECOND NUMBER/ AND /THIRD NUMBER/

«SURPRISE=5 g e g (A 1little more likely here.)
109 + 749 + 5 = 175
~98-

Report No. 1889 Bolt Beranek and Newman Inc.

«LIST MYSTERY=-4

3 TO MYSTERY=-4 /FIRST NAME/ AND /MIDDLE NAME/ AND /LAST NAME/
i 10 PRINT WORD OF FIKST OF /FIKST NAME/ AND WORD OF FIRST OF /MIDDLE
4 NAME/ AND FIRST OF /LAST NAME/

] END
«MYSTERY=4 M\'MARY'" AND *"JAYE' AND "SIMMS"
3 MJS
; «MYSTERY=4 "STEVEN" '""HOWARD" **EPSTEIN" __
% il JENT THOWARD™ |

«LIST MYSTERY=5

; TO MYSTERY=5 /NUMBER/

18 PRINT DIFFERENCE OF /NUMBER/ AND /NUMBER/
END

«MYSTERY-S **]3"

0

«MYSTERY=5 '"12345600"
%)

«LIST MYSTERY-6

% TO MYSTERY-6 /BIRTH MONTH/ AND /DAY/ AND /AGE/
§ 18 PRINT SENTENCE OF ''MY BIRTHDAY IS'" AND SENTENCE OF /BIRTH MONTH/ AND
/DAY /

20 PRINT SENTENCE OF "I AM" AND SENTENCE OF /AGE/ AND 'YEARS OLD.*"
END

«MYSTERY=6 "JUNE'" 5" wgu
MY BIRTHDAY 1S JUNE 5

1 AM 8 YEARS OLD.
«MYSTERY=6 '"MAY'™ *'1" **|9g"
MY BIRTHDAY IS MAY 1

I AM 190 YEARS OLD.

~MYSTERY=~-6 "EAT2'" 123" "ﬂ@ﬁ%ﬁﬁé@b " (How does one say that
MY BIRTHDAY 1S EATZ2 123 7 number? The teacher helps.)
I AM 100000000A YEARS OLDe.

~99~

R o i

Report No. 1889 Bolt Beranek and Newman Inc.

«SP (LESSON SIXTEEN)

HERE ARE SOME SUGGESTIONS FOR PROCEDURES WHICH YOU MIGHT HRITEﬁ @

THE FIRST PROCEDURE 1S ANOTHER KIND OF DOUBLE PROCEDUREs THIS
PROCEDURES IS CALLED °*DBL' AND WILL DOUBLE ANY NUMBER. @

HERE 1S AN EXAMPLE OF HOW DBL WORKS. YOU TYPE =-- DBL 74"
*DBL_"'4"
8

NOW TRY DBL AGAIN BY TYPING =-- DBL AND ANY NUMBER YOU CHOOGSE.
%*DBL "'23"
S50

NOW I HAVE ERASED MY PROCEDURE - DBL. WHEN YOU SEE THE ARROW, IT IS

YOUR TURN TO WRITE A PROCEDURE - DBL - WHICH WILL DO WHAT MY DBL DOES

e

WHEN YOU ARE SURE YOUR DBL WORKS, TYPE == NEXT - TO SEE MY NEXT
PROCEDURE .

«LIST DBL (It was erased!)
DBL. ISN‘T DEFINED.

«TO DBL ANY NUMBER

YOU NEED / MARKS AROQUND EACH ARGUMENT.

<TO DBL /ANY NUMBER/
>16 PRINT SUM OF /ANY NUMBER/ AND ZANY NUMBER/
SEND

“DBL 14
28
~DBL "'S"

106

«DBL '"345"

690

«DBL. "1234567890"
2469 135780

«DBL "'G987654321"

1975308642
eNEXT

~100-~

(4]
%

bz opens Boy zan e

Report No. 1889 Bolt Beranek and Newman Inc.
% THE NEXT PROCEDURE IS CALLED SECOND. IT PRINTS THE SECOND LETTEK OF ANY
3 WORD YOU GIVE IT. @

TRY OUT MY PROCEDURE SECOND. YOU TYPE == SECOND '‘JuMp*
* SECOND **'J U.MPH

u

HERF 1S ANOTHEKR CHANCE TO TkKY OUT MY PROCEDURE SECONDe TYPE -=- SECOND
“"HELLO"

* SECOND '""HELLO'

E

SECOND HAS NOW BEEN ERASED. IT1'S YOUR TUrN TO WRITE A PROCEDURE CALLED
SECOND WHICH WILL PRINT THE SECOND LETTER OF ANY WORD. HAVE FUN! @

WHEN YOU ARE SURE SECOND WORKS, TYPE =- STILLMORE= FOR THE LAST
4 PROCEDURE.
: «TO SECOND /ANYWORD/ _
>1% PRINT SECOND LETTER OF /ANYWORD/ (His intention was clear -)
>END
SECOND DEFINED
«SECOND *'ME"
LETTER ISN'T DEFINED. {but not to LCGO!)
I WAS AT LINE 19 IN SECOND.
«EDIT SECOND (So he ed
#10 o by giving
>10 PRINT FIRST OF BUTFIRST OF /ZANYWOKRD/
SECOND DEFINED
«SECOND "iE*"
E . . ;
; « SECOND ''SUPERCALAFRAGEALI STICEXPIALADOCHES" (Jow!) 4
1 U i
‘ « SECOND_"T" | %

(The answer is the Fmpty %Word.) '3
«5TILLMORE ' X
HERE IS THE LAST PROCEDURE FOR YOU TO TRYe. IT IS CALLED ‘*ADD.* ADD %é
TAKES THREE DIFFEKENT NUMEBERS AND ADDS THEM TOGETHEK. @ ‘3

HERE 1S AN EXAMPLE OF HOW ADD WORKS. YOU TYPE = ADD **3" 6" g |
*!\[)I) l'3'0 l'()l. '.fj"
17

ot o s 7

-101- ;g

Report No. 1889 Bolt Beranek and Newman Inc.

HERE IS5 ANOTHER CHANCE TO TRY MY PROCEDURE =-- ADDe. TYFE =- ADD AND ANY
THREE NUMBERS YOU CHOOSE.

*ADD 0143.. l'ﬁll 0043'.

86

NOW IT'S YOUR TURN AGAIN. ADD IS GONE. PLEASE WRITE ONE OF YOUK OWN. @

WHEN YOU ARE SURE YOUR ADD WORKS, YOU ARE WELL ON YOUR WAY TO BECOMING

A CRACKERJACK PROGRAMMER. !

«T0 ADD /ANYNUMBER/Z AND /ANYNUMBER/ AND /ANYNUMBER/ (A beauty of a bug!)
>10 PRINT SUM OF SUM OF /ANYNUMBER/ AND ZANYNUMBER/ AND /ANYNUMBEKR/
JEND

ADD DEFINED

._ADD ll7|l l|7|' l010|

21 (What's wrong?)

“ADD "1 "1t

3 (It worked this time!)

‘.ADD ..12.' ..12'. .'.__]_""'

36 (But again it failed.)

¢YEXAMPLE (The teachesr intervened here to help
«TO. TEST_/FIRSTWORD/ AND /SECONDWORD/ explain the difficulty with this
>10 PRINT WORD OF /FIRSTWORD/ AND /SECONDWORD/ example.)

>END

Fo— 's write a TEST
TEST DEFINED (Let's write a procedure called TEST)

(Here is another way of writing TEST)

. TO _TEST-1 /FIRSTWORD/ AND /FI1RSTHORD/
>10 PRINT WORD OF /FIRSTWORD / AND /S\FIRSTT\WORD/
>END (Now let's try the two procedures)

TEST-1 DEFINED
«TEST *"'DOG'" “CAT'

DOGCAT (Right!)
«TEST~-1 “DOG'". “"CAT" ‘
DOGDOG) (Wrong!) (The error is clear - now

«TO ADRD /FIRSTUWORD/ AND /SECONDWORD/Z AND /THIRDWORD/ we can fix ADD.)
ADD IS ALREADY DEFINEDs

«ERASE ADD (But first we must clear the slate.)
«TO ADD /FIRSTWORD/ AND /SECONDWORD/ AND /THIRDWORD/

>10 PRINTm§UM OF SUM OF /F1RSTWORD/ AND /SECONDWORD/ AND /THIRDWORD Y/
>END '

ADD DEFINED

.,,ADD OISII l‘2.l lll" .

6 : (Good!)

[

-102-

PRt v —————— PR el

Report No. 1889 Bolt Beranek and Newman Inc. n

«TEACHIF (LESSON SEVENTEEN)

IN LOGO WE CAN ASK THE COMPUTER TO DO DIFFERENT KINDS OF WORK. €

WE CAN ASK IT TO TYPE SOMETHING, BY SAYING PRINT. WE CAN ASK IT TO NAME
SOMETHING BY SAYING CALL. @

NOW WE ARE GOING TO LEARN HOW TO ASK IT TO CHECK SOMETHING. @

e At i g g b £ ol ST+ et 0

SUPPOSE WE WANTED TO FIND OUT IF 5+3=8. WE CAN ASK THE COMPUTER IN
LOGO. @€ '

WE DO THIS BY WRITING TWO INSTRUCTIONS ON TWO SEPARATE LINES. @

-

THE FIRST INSTRUCTION WOULD BE -~ IS SUM OF ''S' AND '3" "8"
THE SECOND INSTRUCTION MIGHT BE =-- IF YES PRINT "YES"

YOU TYPE IN THE FIRST INSTRUCTION.
1S SUM QF %5 AND g\ e g

NOW TYPE THE SECOND INSTRUCTION.
*IF YES PRINT "YES" ;
YES {

HERE ARE TWO MORE INSTRUCTIONS FOR YOU TO TYPE: ==

THE FIRST ONE IS: == IS FIKST OF "TREE" “T*

THE SECOND ONE IS: == IF YES PRINT "YES"
%1S FIRST OF TREE "T* -
PLEASE TRY AGAIN.

#1S FIRST OF “TREE'" "7° :
+IF YES PRINT ""YES"]
YES | I

HERE IS THE THIRD SET OF INSTRUCTIONS FOR YOU TO TRY: == ;
IS COUNT OF "DOG'" "4"]
IF YES PRINT "YES"

*]S COUNT OF "DOG" ‘4"

*IF YES PRINT 2Y\\"YES" ' K

WHAT HAPPENED? DID THE COMPUTER KRETURN EMPTY? DO YOU KNOW WHY? @

IT RETURNED EMPTY BECAUSE 1T WAS TOLD TO PRINT YES ONLY IF THE ANSWER
WAS YES. SINCLE THE ANSWER WAS NOT YES, IT RETURNED E4IPTY. @

Report No. 1889 Bolt Beranek and Newman Inc.

HERE IS THE LAST SET OF INSTKUCTIONS FOR YOU TO TRY: =~-
IS LAST OF " TREE' *'T*
IF NO PRINT "NO'

*IS LAST OF T\'"TREE" "T"

*IF NO PRINT ''NO"

NO o

IN THIS LAST SET OF INSTRUCTIONS, WE USED - IF NO -- INSTEAD OF - IF
YES. IF NO AND IF YES WORK IN THE SAME WAY.@

LOOK BACK AT THE DIFFERENT INSTRUCTIONS WE HAVE GIVEN THE COMPUTER
USING - IS. IS TESTS TWO THINGS TO FIND OUT IF THEY ARE THE SAME. @

I AM GOING TO ASK YOU TO TRY SOME 'IS*' INSTRUCTIONS OF YOUR OWN, BUT I
WILL ALSO GIVE YOU A LIST OF IDEAS THAT YOU CAN WORK WITH. @

HERE IS THE LIST:

IS '"LOGO'" '''.0GO"

1S DIFF OF '4' AND "i" 1"

IS WORD OF 'CAT"™ AND '"DOG'" ''CAT DOG"
IS "“THIS SCHOOL' 'EMERSON"

1S "BLACK" 'WHITE"

IS BUTFIRST OF BUTFIRST OF '"'GAME' ''ME"
] 1S /BLUE/ /BLUE/

] IS /GREEN/ /BLUE/

4 IS /EMPTY/s ""

IS BUTFIRST OF BUTLAST OF "BYE® "E"
«1S /SNOOPY/ A /DOG/

A ISN'T DEFINED.

«IS ""LOGO"™ '"LOGO"

1 «IF YES PRINT "OF CORSE DUW\MMY EVERYBODY KNOWS THAT"
OF CORSE DUMMY EVERYBODY KNOWS THAT
] «I1S DIFF_OF '"4'' AND2\ '"i' "i"
i «IF NO PRINT "THAT 1S SO HARD I DO NOT KNOW"
THAT 1S SO HARD I DO NOT KNOW
«1S WORD OF '"CAT'" AND 'DOG'" "CAT DOG"
«1F NO PRINT ""HOW SHOUD I KNOW"
HOW SHOUD I KNOW Cmmem
] «1S /GREEN//BLUE/ ‘
~IF_YES PRINT "ONLY MARY JAYE WOULD NOT KNOW THAT"
ONLY MARY JAYE WOULD NOT KNOW THAT
] «IS "THIS SCHOOL!\'* ""EMERSON'
] «IF YES PRINT ' "
] «IF NO PRINT "I THINN\\\DON\ NOT THINK SO"
] I DO NOT THINK SO “ T

| ~104-

i

. l,..-—-*—— -
S

:

g

:

e w—— ——ama e o

Report No. 1889 Bolt Beranek and Newman Inc.

«START (LESSON EIGHTEEN)

HERE IS A PROCEDURE WE USED WHEN WE FIRST STARTED WORKING WITH THE
COMPUTER,. ©

_~ FIRST ASK THE COMPUTER TO == LIST SAYHI. @

THEN TRY OUT SAYHI TO SEE WHAT IT DOES. @

WHEN YOU ARE READY TO GO ON, TYPE -- MORE.
«LIST SAYHI

TO SAYHI

19 PRINT *HI*
26 SAYHI

END

«SAYHI

HI

HI

HI

HI

HI

(The program was stopped by hitting the BREAK key.)

«MORE

NOW IT*S YOUR TURN TO WRITE A PROCEDURE. @

TRY TO WRITE A PROCEDURE WHICH WILL PRINT OUT YOUR NAME JUST THE WAY
SAYHI PRINTED HIl. @

WHEN IT WORKS, TYPE ~« NEXT «- FOR ANOTHER SUGGESTION.
«TO SAYRUTH=-ANNE

>1@ PRINT “RUTH-ANNE®

>20 SAY \RUTH=-ANNE

>END -
SAYRUTH=-ANNE DEFINED
«SAYRUTH=ANNE
RUTH=~ANNE

RUTH-ANNE

RUTH=ANNE

RUTH=ANNE

RUTH=ANNE

-105-~

Sat sy

Report No. 1889 Bolt Beranek and Newman Inc.

«NEXT

NOW ARE YOU -READY FOR THE CHALLENGE? ANSLKEFR YES OF NO.

*YE S

THIS TIME TRY T VRITE A PROCEDURE THAT WILL WORK NON ANY WORD YOU GIVE
ITe @

PLEASE CALL YOUK PROCEDURE == WORK. IF I USFD YOUR PKROCEDURE AND SAID
WORK "MARGE® IT WOULD TYPE =-- MARGE =-- KIGHT DOWN THE PAGE. @

HOW ABOUT IT? ARE YOU GAME? GOOD LUCK!

«TO_SAY /ANYWOKD/ (It apparently seemed more natural to call
>12 PRINT ZANYWORD/ her procedure SAY.)

>20 SAY /ANYWOKD/

>END

SAY DEFINED

«SAY "I WwILL MISS yYOu'

I WILL MISS YOU (A last day farewell from the child to
WILL MISS YOU the teacher.)

WILL MISS YOU

WILL. MISS YOU

wILL MISS yYOu

WILL MISS YOU

WILL MISS YOU

[e e e

~106-

e T

R R L T A e A e XL T Negete s Wit YEeh b ety e BT e T e T e s e s 2R . T F e e e T TR LA T T T T e e 2 T BT e e AR T D TR AT ARSI T A e Tm v T T R D e A s e

Report No. 1889 Bolt Beranek and Newman Inc.

Examples of LOGO Lesson Programs

The next two typescripts are the LOGO programs for Lessons One and
Eighteen. These two programs are typical of the series of twenty.
They are included to illustrate the ease with which LOGO can be
used to express teaching interactions like those shown in the pre-
ceding pages. The programs were written by the teacher, Mrs.
Bloom, who had not done any programming prior to learning LOGO in
the summer of 1968.

The program for Lesson One is composed of three procedures -
SKIP, REQ, and LESSON1l. Their operation is as follows. SKIP /N/
causes the teletype to skip /N/ lines by printing the EMPTY word
/N/ times. REQ first executes a request instruction, i.e., waits
for a user to type in a message, and then skips a line. The
lesson begins when the student calls the main procedure LESSON1,
which types a series of messages back to him. The messages are
punctuated by SKIPs. The student calls forth each succeeding
message when he is ready by hitting the carriage return key, thus

completing a REQ.

The instructions in lines 108, 168, and 208 refer to the names
/Cl/, /C2/, and /INSTRUCTION/ (listed at the end of the program),
and illustrate the printout of messages containing embedded

quotes.

-107-

i R

Report No. 1889 Bolt Beranek and Newman Inc.

LESSON ONE

TO SKIP /NUMBER/
10 TEST IS /NUMBER/ *B"
20 IF TRUE STOP
30 PRINT /EMPTY/
: 49 SKIP DIFFERENCE /NUMBER/s *1*
4 END

T0 REQ

10 REQUEST
20 SKIP "1*
END

T0 LESSONI]
10 SKIP 1"
20 TYPE "IN THIS LESSON THERE ARE SOME LINES TO READ. THE COMPUTER
TYPES VERY FAST. IT WILL STOP EVERY SO OFTEN SO THAT YOU WILL HAVE
TIME TO READ. WHEN YOU WANT IT TO GO ON, PRESS THE RETURN KEY. @
30 REQ
4@ TYPE "THIS MARK @ MEANS THAT THE COMPUTER HAS MORE TO TELL YOU.
PRESS THE RETURN KEY WHEN YOU ARE READY TO READ IT. o
$@ REQ
6@ TYPE “THE COMPUTER UNDERSTANDS SOME SPECIAL COMMANDS. THE FIRST ONE
WE WILL TALK ABOUT IS =~ PRINT. 0"
] 70 REQ
; 80 PRINT "LET'S TELL THE COMPUTER TO PRINT A WORD.] WILL TYPE THE
é CONMAND. YOU PRESS THE RETURN KEY WHEN I AM FINISHED. O"
99 SKIP "1*
100 TYPE /C\V/
119 REQUEST
120 DO /C1/
130 SKIP *1*
140 PRINT "NOW LET®S TELL THE COMPUTER TO PRINT A SENTENCE. YOU PRESS
THE RETURN KEY THIS TIME T0O."
150 SKIP *"“1*
160 TYPE /C2/
170 REQUEST
189 DO /C2/
190 SKIP 1
200 TYPE / INSTRUCTION/
210 REQ
200 TYPE "NOW TRY TO MAKE THE COMPUTER PRINT SOME OF YOUR OWN THINGS.
'00
% 230 REQ
1 249 TYPE "DON°'T WORRY ABOUT MAKING MISTAKES! WE ALL DO IT! THE COMPUTER
] WILL TRY TO HELP YOU BY EXPLAINING WHAT WENT WRONG. 0
250 REQ
260 PRINT "MHAVE FUN!*"
END

/C1/7 1S "PRINT “CABBAGE"*"

/C2/ 1S “PRINT DO YOU LIKE THE BEATLES?"* !

ZINSTRUCTION/ 1S "NOTICE THAT THERE WERE QUOTATION (* *) MARKS AROUND o
THE EXACT WORDS THE COMPUTER WAS ASKED TO PRINT. @ .

~-108-

Report No. 1889 Bolt Beranek and Newman Inc.

The program for Lesson Eighteen also uses the SKIP and REQ pro-
cedures (these are not feproduced again). The program comprises
four main procedures - START, SAYHI, MORE, and NEXT - which are
executed successively, as follows. START tells the student to
list the procedure SAYHI, then to execute it to see what it does,
and after that to type MORE. The procedure SAYHI prints out HI
repetitively. When the student types MORE, he starts up the

MORE procedure which asks the student to write a program for
printing out his name, just as SAYHI printed HI, and then to

type NEXT. When the student types NEXT, he starts up the NEXT
procedure which asks him if he is ready for a challenge. If he
answers YES (if his first answer is NO, he is asked to reconsider;
if he is insistently negative, the lesson ends), he is given the
problem of writing a SAY procedure that extends the preceding
ones by pririting out any given message repetitively.

Note the alternation of control between the teaching program and
the student across successive phases of the interaction. 1In
START, MORE, and NEXT the "teacher" is directing the student.

But when using SAYHI, and when writing and using the two programs
that are assigned to him, the student is using LOGO on his own.
Embedding this kind of open-ended work enlivens the instruction
and helps avoid the rigid, heavy-handed, stereotypy characteristic
of much current computerized teaching.

-109-

Report No. 1889 Bolt Beranek and Newman Inc.

LESSON EIGHTEEN

TO START

18 SKIP "1*"

290 TYPE *HERE IS A PROCEDURE WE USED WHEN WE FIRST STARTED WORKING WITH
THE COMPUTER. @*

30 REQ

49 TYFR “FIRST ASK THE COMPUTER TO =-- LIST SAYHI. e"

S® REQ

6@ TYPE "THEN TRY OUT SAYHlI TO SEE WHAT IT DOES. e*

70 REQ

80 PRINT "WHEN YOU ARE READY TO GO ON, TYPE -- MORE."

END :

TO MORE

% 10 SKIP =1
4 29 TYPE “NOW IT'S YOUR TURN TO WRITE A PROCEDURE. @*
f 30 REQ] : o
40 TYPE “TRY TO WRITE A PROCEDURE WHICH WILL PRINT OUT YOUR NAME JUST
THE WAY SAYHI PRINTED Hl. @"
3 S@ REQ '
1 60 PRINT "WHEN IT WORKS, TYPE == NEXT == FOR ANOTHER SUGGESTION."
% END ‘

TO NEXT
10 SKIP "1
20 PRINT "NOW ARE YOU READY FOR THE CHALLENGE? ANSWER YES OR NO.’
30 REQUEST °**ANS*"
i 48 1S /ANS/ “YES"™
g 45 lg ﬁo PRINT AW, GEE. WON'T YOU PLEASE GIVE IT A TRY? ANSWER YES OR -
1 NO. » -
3 S@ IF NO REQUEST ""ANS'"
1 60 IF NO IS Z/ANS/ *"YES"
72 IF NO PRINT "OKAY», THEN. MAYBE YOU'LL FEEL MORE DARING LATER."
] 75 IF NO RETURN" ' ' -
4 80 TYPE *"THIS TIME TRY TO WRITE A PROCEDURE THAT WILL WORK ON ANY WORD
] YOU GIVE ITe. €
90 REQ N
180 TYPE SENTENCE SENTENCE °*PLEASE CALL YOUR PROCEDURE ~-- WORK. IF 1 §
USED YOUR PROCEDURE AND SAID*" /WM/ *"IT WOULD TYPE -~ MARGE -~ RIGHT |
DOWN THE PAGE. @*
112 RE@ -
120 PRINT "HOW ABOUT IT? ARE YOU GAME? GOOD LUCK!*

END

= ..

i

TO SAYHI

10 PRINT "HI"
20 HI

END

/WM/ 1S "WORK *"MARGE"*

-110~-

Report No. 1889 Bolt Beranek and Newman Inc.

3.4 The Games

The children's "work" on their lessons was punctuated from time
to time by playing various games at the computer terminal. The
games included:

Tic-Tac-Toe
Four-in-a-Row
Nim
Thirty-one
Wordhunt
Hangman
Guessword

Printout from children's play with Four-in-a-Row, Nim, Thirty-one,
Wordhunt, and Hangman is reproduced in this section.

These games are described on the printouts. The other two games
are similar to those included here. Thus, Tic-Tac-Toe (X's and
O's) is the familiar 3 X 3 board game which might aptly be called
Three-in-a-Row, and Guessword, like Hangman, 1s a word guessing
game. Two other entertainments were provided by (1) a program
SNOW which produces large signs on teletype paper, given the
message text - either black on white or white on black, and

(2) a LOGO program SNOOPY which makes a teletype drawing of the
famous dog carrying a flag emblazoned with whatever name the
child requests.

A slightly truncated SNOOPY picture is reproduced at the end of
this section - the requested input was "LOGO".

=111~

Report No.

1889

«FOUR-IN-A-ROW

Bolt Beranek and Newman Inc.

DO YOU KNOW HOW TO PLAY? ANSWER YES OR NO.

*NO

THIS GAME IS SIMILAR TO TIC-TAC-TOE IN MANY WAYS.
YOU WILL PLAY ON A BOARD THAT LOOKS LIKE THIS:

0
S %
4 X
3 x
2 x
1 *
B %

(7

*k

%

2

*

%

2

3

*

*

%

3

4

*

*

4

3

*

*

5

N W >

EACH * CAN BE NAMED BY TWO DIGITS. THE FIRST DIGIT COMES FROM THE

HORI ZONTAL ROW OF NUMBERS.

COLUMN OF NUMBERS.

THE SECOND DIGIT COMES FROM THE VERTICAL

* FOR EXAMPLE, SUPPOSE WE WANT TO REPLACE THE 2. IN THE BOARD BELOW WITH

AN Xﬁ
e

S %

' 4. *
3 *

2 %

1 *

0 *
%)

THE QUESTION MARK IS AT 23,

*

1

*

2

AND AT 3 ON

%*

3

*

4

*

S

N W »

]

BECAUSE IT IS AT 2 ON THE HORIZONTAL ROW

THE VERTICAL COLUMN.

-1ll2-

T e e e e g

ey
R -

Report No. 1889 | Bolt Beranek and Newman Inc.

ONE PLAYER WILL PLAY X'S. THE OTHER PLAYER WILL PLAY O'S.
EACH PLAYER TAKES TURNS PUTTING IN HIS MARKS.

IF YOU CHOOSE A POINT THAT HAS ALREADY BEEN TAKEN, YOU MUST LOSE YOUR
T URNe SO SELECT YOUR POINTS CAREFULLY!

THE PURPOSE OF THE GAME, CF COURSE, IS TO GET FOUR X'S OR 4 0°'S IN A
R OW. THE ROW MAY BE VERTICAL, HORIZONTAL, OR DIAGONAL. i
THE COMPUTER WILL CHECK EACH TIME TO SEE IF THERE IS A WINNER.

N

9 é

3 WHO IS PLAYING WITH X°'S? (TYPE IN YOUR NAME.) &

i * ROSEMARIE PHILLIPS ° ;

] WHO IS PLAYING WITH 0°'S? (TYPE IN YOUR NAME.)

1 *MRS. BLOOM oo . , ‘

: ROSEMARIE PHILLIPS ,PLEASE TELL ME YOUR MOVE.

4 *51

] B 1 2 3 4 5

; 5 % % % *x * % 5

E 4 % % % %X *x *x A

; 3 ¥ * *x %x % *x 3 g

g 2 %k % * * % % 2

4 1 % % *x *x *x X 1 ?

% B % * * *x * *x D %

’(8 1 2 3 4 5 ¥
MRS. BLOOM ,WHAT IS YOUR MOVE, PLEASE? i
* 42 :

Eiee - =y

ISR S e i i e S S e oy

Report No.

1889

_ROSEMARIE PHILLIPS

*00

MRS.
+53

vV W > W

M W >

X
2

%

» WHAT |

0
2

*

3

*

0
0
X

3

0
0 .
X

X

4

Bolt Beranek and Newman Inc.

»PLEASE TELL ME YOUR MOVE.

*
N (A D wn

wn

YOUR

[\V) W D

@it X X O O
L)

MOVE, PLEASE?

CONGRATULATIONS,, MRS. BLOOM YOU'VE WON!

-114-

-y E

L paasiat XA e

Report No. 1889 Bolt Beranek and Newman Inc.

«NIM .
DO YOU KNOW HOW TO PLAY NIM? PLEASE ANSWER YES OR NO.
*NQ ‘

TO PLAY THE GAME WE WILL NEED A STRING OF X°'S THAT LOOKS‘LIKE THIS:
XXXXXXXXXXe 1 WILL LET YOU DECIDE HOW MANY X*S WE SHOULD USE.

AFTER YOU TELL ME HOW MANY X°S YOU WANT TO PLAY WIiTH, I WILL TYPE OUT
HE CORRECT AMOUNT. THEN YOU AND I WILL TAKE TURNS REMOVING 1, 2, OR 3

X*'S AT A TIME. THE OBJECT OF THE GAME IS5 TO LEAVE 1 X. THE LOSER IS THE

ONE WHO MUST TAKE THE LAST X.

hs -.

et

I°'M ALL READY. ARE YOU?

YOU'RE LUCKY. YOU GET TO CHOOSE HOW MANY X'S WE ARE GOING TO PLAY WITH.
ELL ME HOW MANY X'S YOU WANT TO USE. THEN . WILL PRINT THEM SO THAT WE

CAN BOTH LLOOK AT THEM. PLEASE TELL ME TO PRINT AT LEAST 6 X°S.

*19

KXXXXXXXXXXXXXXXXXX (19)

DO YOU WANT TO GO FIRST?
*YES
HOW MANY X°*S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X°'S.

*9_'

XXXXXXXXXXXXXXXX €16)
I WILL REMOVE 3 X°S. .
XXXXXXXXXXXXX €13)

HOW MANY X*S DO YOU WANT. TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S.
*3 "

XXXXXXXXXX €10)

~115-

= = S e e Ve sstmf~aeipere

e e

Report No. 1889 Bolt Beranek and Newman Inc.

I WILL REMOVE § X°'S.
XXXXXXXXX €9)

HOW MANY X°'S DO YaU WANT TO REMOVE? YOU MAY REMOVE 1s 2» OR 3 X'S.
* 4 '

YOUR REQUEST MUST BE 1,2,0R 3.
HOW MANY X'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X°'S.

%2
XXXXXXX €T)

I wiLL REMOVE 2 X*S.

XXXXX (5)

HOW MANY X°'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1., 2, OR 3 X'S.
*2

XXX (3)

1 WILL REMOVE 2 X'S.
X (1)

AHA! LOOKS LIKE YOU'VE LOSf: BUT 1°'LL GIVE YOU ANOTHER CHANCE TO BEAT

ME, IF YOU'D LIKE.
DO YOU WANT TO PLAY AGAIN?

*YES .
TELL ME HOW MANY X 'S YOU WANT TO USE. THEN I WILL PRINT THEM SO THAT KE

CAN BOTH LOOK AT THEM. PLEASE TELL ME TO PRINT AT LEAST 6 X'S,
*15 X : .

XXXXXXXXXXXXXXX €15)

DO YOU WANT TO GO FIRST?
*YES

HOW MANY X°'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S.

*2

XXXXXXXXXXXXX €13)
-116-~

Report No. 1889 Bolt Beranek and Newman Inc.
1 I WILL REMOVE 3 X'S.
1 XXXXKXXXXXX €10)
1 HOW MANY X*S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X°'S.
i *1
| XXXXXXXXX €9)
1
\
1 I WILL REMOVE 1 X'S.
| ’ :
1 XXXXXXXX (8)
1 HOW MANY X°S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S.
*3 -
i XXXXX €5)
3 I WILL REMOVE 1 X°S.
§ XXXX € 4) |
5 HOW MANY X°'S DO YOU WANT TO REMOVE? YOU MAY REMOVE 1, 2, OR 3 X'S. 3
] *3 ' %

X 1)

CONGRATULATIONS! YOU WON! YOU MUST BE VERY SMART! BUT 1°'M NOT SO DU™B
EITHER. PLEASE GIVE ME ANOTHER CHANCE!

DO YOU WANT TO PLAY AGAIN?

*NO
GOODBYE FOR NOW. LET'S PLAY AGAIN SOMETIME.

~117-

e i T TS - T

1

R e Y

Report No. 1889 Bolt Beranek and Newman Inc.

*THIRTY ONE

DO YOU KNOW HOW TO PLAY? ANSWER YES OR NO.
oNO

HERE ARE THE DIRECTIONS.

THE COMPUTER WILL ASK YOU FOR YOUR NUMBERe. YOUR NUMBER MUST BE 1, 2, 3»
4 Ss OR 6.

THEN TME COMPUTER WILL CHOOSE A NUMBER FROM 1 TO 6 AND ADD IT TO YOURS.

YOUR NEXT NUMBER WILL BE ADDED TO THE TOTAL»,» AND YOU AND THE COMPUTER
WILL TAKE TURNS SELECTING NUMBERS UNTIL ONE OF YOU IS ABLE TO REACH 3.
THE WINNER IS THE ONE WHO HITS TKIRTY-ONE EXACTLY.

Dot;OU WANT TO GO FIRST. ANSWER YES OR NO.
sY

' GIVE ME YOUR NUMBER, PLEASE.

*3

THE TOTAL IS NOW S
1°'WILL ADD S

TME TOTAL IS N i 10

GIVE ME YOUR NUMBER, PLEASE.
-4

" TME TOTAL IS NOW 14

I WILL ADD 3
THE TOTAL IS NOW 17

GIVE ME YOUR NUMBER, PLEASE.
*

THE TOTAL 1S NOW 18

"1 WILL ADD &

THE TOTAL IS NOW 24

" GIVE ME YOUR NUMBER, PLEASE.
o4

THE TOTAL IS NOW 28

-118-

Report No. 1889

1 WILL ADD 2
THE TOTAL 1S NOW 3}

AH HA! AREN'T 1 CLEVER?

DO YOU WANT TC PLAY AGAIN?
*VES

GIVE ME YOUR NUMBER; PLEASE.
.3

THE TOTAL IS NOW 3
I WILL ADD 4
= THE TOTAL IS NOW 7

i ‘GIVE ME YOUR NUMBER, PLEASE.
i “3

THE TOTAL IS NOW 16

¢ - 1 WILL ADD 2

ﬂ‘ THE TOTAL 1S NOW i2

u GIVE ME YOUR NUMBER, PLEASE.
¥ *5

|

THE TOTAL IS NOW 17
I WILL ADD |

s gem mEneen g, (7
I
.

THE TOTAL 1S NOW 18

GIVE ME YOUR NUMBER, PLEASE.
*6

THE TOTAL IS NOW 24
I WILL ADD &

THE TOTAL IS NOW 30

GIVE ME YOUR NUMBER, PLEASE.
Ll

THE TOTAL IS NOW 31
CONGRATULATIONSs GENIUS! YOU GOT ME!

-116~

Bolt Beranek and Newman Inc,.

Report No. 1889 Bolt Beranek and Newman Inc.

~ WORDHUNT

DO YOU KNOW_HOW TO PLAY?
#NO_

THINK ABOUT HOW MANY WORDS YOU CAN MAKE OUT OF THIS WORD =-- TOwWN. YOU
MAY USE SOME OR ALL OF THE LETTERS. @

I HAVE AN ANSWER LIST. I WILL GIVE YOU A CHANCE TO FIND OUT LATER CIF
YOU WANT TO KNOW) HOW MANY WORDS ARE ON MY LIST. @

EACH TIME YOU SEE THE *, TYPE IN ONE WORD WHICH YOU HAVE MADE FROM THE
LETTERS IN TOWN @ :

IF I THINK YOUR WORD IS A GOOD WORD» I WILL TELL YOU THE TOTAL NUMBER
OF WORDS YOU HAVE. @

IF I AM NCT SURE ABOUT YOUR WORD, I WILL LET YOU KNOW. @

NO PROPER NAMES, ABBREVIATIONS», CONTRACTIONS, OR FOREIGN WORDS ALLOWED.

@
IF AT ANY TIME YOU WANT TO STOP PLAYING» JUST TYPE =- STOP. @

READY?

TELL ME THE FIRST WORD YOU CAN MAKE FROM: TOWN
*TO

YCU NOW HAVE 1 WORD.
*NO

YOU NOW HAVE 2 WORDS.
*ON

YOlJ NOwW HAVE 3 WORDSe
*O N

YOU NOW HAVE 4 WORDS.
*WON

YOU NOW HAVE 5 WORDS.
*NO W

YOU NOW HAVE 6 WORDS.
*NOT

YOU NOW HAVE 7 WORDS.
I THOUGHT YOU WOULD LIKE TO KNOW THERE ARE ONLY THREE MORE WORDS ON MY
LIST »

*TON

YOU NOWw HAVE & WORDS.
*TOW

YOU NOW HAVE 9 WORDS.

-120-

Report No. 1889 Bolt Beranek and Newman Inc.
: *LONT
3 THAT WORD IS NOT ON MY LIST» HBUT I CUULD HE WKONCGe CHECK WITH YOUk
3 TEACHER WHEN YOU ARE THROUGH PLAYING. I WILL NOT COUNT IT FOic NG
7 #T 100
: YOU NOV HAVE 19 WORDS.
4 CONGRATULATIONS. YOU ARE A GOOD WORDHDLND!
{ IF YOU WANT TO PLAY AGAIN, TYPE =-- WORDHUNT 1 WHEN YOU SEE THE ARKOV.
; L ORDHUNT 1
] DD YOI KNOW HOW TO PLAY?
*YES
TELL ™K THE FI~ST WORD YOU CAN MAKE FROM: SAME
, * M
i YOU dNUW RAVE 1 BORD
i *V,A
; YOU NOV HAVE 2 v0xISe
] YOU NOY HAVE 3 #w0OxDS.
: I THOUGHT YOU wOULD LIKE TO KNUW THERE ARE ONLY THREE MORE WOkDS On mY
;‘ LIST.
i YOU HAVE ALKEADY GIVEN ME THAT LOKD.
4 *SEAM
] YOU NOb HAVK 4 b OKRDS.
; *A &
] YOU NOW HAVE 35 LORDS.
4 *SEA
YOIT ni)w KAVE 6 WORDS.
OONCRATULAT TONS . YOI ARE A GOOD YURNDHOLUND!
IF YOI WANT TO PLAY AGAIN, TYPK == WORDHUNT ¢ WHEN YOU SEE THE Axidb.
“ORDHUNT 2
DO YOU KNO& HOW TO PLAY?
*YE §
TELL ME THE FIRST WORD YO CAN ¥AKE FROMS DKEAM
*DEA
;
4

~121-

Report No. 1889 Bolt Beranek and Newman Inc.

oHANﬁ%QN
-1 AM NG TO PICK A MYSTERY WORD FROM MY WORD BANre YJUU CAN TRY TJ

GUESS MY WORD.
I WILL GIVE YOU A CLUEe I WILL PRINT A DASH FOR EACH LETTER IN THbE

WORDe IF YOU SEE ~-=» THE MYSTERY WORD HAS THREE LETTERS.

I WILL ASK YOU TO GUESS A LETTERe IF YOUR LETTER 1S5 lw “Y WURD 1 wllkw
PUT IT WHERE IT BELONGS

YyOU HAVE SEVEN CHANCES TO GUESS MY WORDe THE FIRST TIME YOUR LETTER 1S
NOT IN MY WORD 1 WILL START SPELLING HANGMANe EACH TIME YOUR GUESS DOES
NOT WORKs I WILL ADD A LETTERe. IF HANGMAN IS ALL SPELLLED OUT» I wlikn
TELL YOU MY WORD AND GIVE YOU A CHANCE TO TRY ANOTHER WORDe

READY? HERE WE GO!

WHAT IS YOUR GUESS?

*A

-e= H

WwHAT IS YOUR GUESS?
%0

0= H

WHAT 1S YOUR GUESS?
*D

<0- HA

WHAT IS YOUR GUESS?
*P

-0~ HAN

WHAT IS YOUR GUESS?
*T

«0= HANG

WHAT IS YOUR GUESS?
*F

-0- HANGWN

WHAT 1S YOUR GUESS?
* W

-0W HANGM

WHAT IS YOUR GUESS?
*C

-0W HANGMA

WHAT IS YOUR GUESS?
%N

-0W HANGMAN

SORRY» YOUR NMAN HAS BEEN HANGED.

YOUR WORD WAS HOW

DO YOU WANT 'TO PLAY AGAIN?

*YES
WHAT IS YOUR GUESS?

*U

-=U

WwHAT IS YOUR GUESS?

*0

-QU

WHAT IS YOUR GUESS?

*Y

YOQU i
CONGRATULATIONS! YOU'VE GOT IT! 4

-122-

AXXXXX XXXX XXX XXXXXXX XXXXXXX

1

1 KX XXKAXXX — XAXXXXX — XXKXXXXX
1 XX XXXXXXX — XXXXXXX XXXXXXX
1 XX XX XX XX XX XX XX
| XX XK XX XX XX XX
) X XX KX XX XX XX
) X X XX XX XX XXXX XX XX
) XX XX XX XX XXXX XX XX
) XX XX XX XX XX XX XX
1

1

1111

XXKXXX XXXXXXX XKXXXKXXX XXXXXXX

JU0JJ
SIVINIVIVIV IVIV IV
R IVIVIS VIS IVIV IV IS IV
"*Q00JY0VVOVYIYUULIVY
90" UJIYIYULVIUOIUIY

==~==00000J00000RRRCB00000000000000

=N ~«~=-000000000030000020088HIVVA0I00I0VIIUYY

ARARBE 000000000000000000000003060000000V0VUVV0Y0
RRARNAR-0000000200000000002003000030I/00~I3093000
RRAMR"00000000000000000000030000J0 " AAHNMNANARNEY
ABR*°050000000000000003I0D00VGI " KA AMENE 000 ME AR
11"000300000030000030000I000V " DHEAE M il i AN Ak
13°°00000000300000U030A0VTUU"" B 15 N 5020 5 i 3 20 0 0 o
111°°006000000000000000303000 AAARAAAMR 0N 0l
1111°°000003000000233000000 " A 8N MIAAAARARAD AR

1
!
1
1
1

e tmb b At Amp
omp Ol Gt fuud

i1

“w W e de

/000990"

/0000000

11 **0000000000090000Q00 " HAXKALKOREAR VYR AMAN
AR STV VRO IV IV IV IO Ro R IV AA - 1 ST B P FFETF T

00000007 d i 1R M %R MK M
*00Q0U0 ANUAR AR AR 0N 0NN
“IJV0VJ" RANE BB X il
"IV TARARRARAAAN A AN

*0909Q" B X X
*3JVI00" ANSaHd
OIIIQOOOOOO

1000000Q0000 002000000
sweeeamtngQ3303000G030

1M1 *30000C303J000"
1111 000000000000y
1111 00000000000 Q0" AN
wem= 000000300000V ERA
Q0303000030000 AN RN
*2300009300'00U" 030" Hu ANl
*0J3330000J9" 003" 0V00RNEMY 4
"JJo00000000* 300 0J00IBHMMAA
*3000000000330333033U0IIII"
"*00000Q00'* 00000300 Y0 IJIIIVY"
* Q00003 0J0V0JIJI"IIVIVI0D"
*300000"we~w=-=="0000000"
"*0003J0000VVVVV00IVVI"
*00000009330030339"
MVIVIVIVIVIS TV IVALIe Ie NS Je N O I8

"0V dudd J
JO00 JuO* JOJJVOu
0000000000090 STV IV IRIVINI 1N
Q30000090090 VOJVI0IY
00000000 JUJUOOU
000000 JJduuu

e rIRNEA __12?__ I NT)

0 0o vt et s P et et bt et e e

4, Junier High Scheol Teaching Experiment

We started the LOGO experirent at HMuzeey Juniep Hich Cehool in
Lexington, Massachusetss, in September 1968, A elass of twelve
seventh-grade students, in the median range of mathematieal
performanee, was seleeted at random (subjeet to the eonstraint -
8ix boys and six girls) frem a population of about twe hundred
students at the sehool at the same mathematies level. les,
lMarjorie Bleem taught the first part of the course introdueing
the children to LOGO. Miss Cynthia Solomon and Dr. Seymour
Papert taught the class from January 1969, continuing with a
LOGO treatment of arithmetic and algebra.

4.1 Design and Operation of the Course

Course Design

We chose to develop a course in Introductory algebra because
most high school students have enormous difficulties with formal
concepts and problem-solving in this subject. Moreover, much

of the content of introductory algebra can be naturally treated
in a thinly disguised form through teaching LOGO. The algebraic
concepts of variable, literal, formula, equation, etc. have
conceptually very clear analogs in LOGO. Thus, the concept of
building LOGO things and referring to them by name is used to
introduce the concept of variable. The LOGO concepts of condi-
tional operation and predicate are us=d to introcduce the mathe-
matical idea of equation, and the LOGO concept of proecedure is
used to introduce the mathematical idea of funetion.

-124-

el D

Report No. 1889 Bolt Beranek and Newman Inc.

4. Junior Higih School Teaching Experiment

We started the LOGO experiment at Muzzey Junior High School in
Lexington, Massachusetts, in September 1968. A class of twelve
seventh-grade students, in the median range of mathematical
performance, was selected at random (subject to the constraint -
six boys and six girls) from a population of about two hundred
students at the school at the same mathematics level. Mrs.
Marjorie Bloom taught the first part of the course introducing
the children to LOGO. Miss Cynthia Solomon and Dr. Seymour
Papert taught the class from January 1969, continuing with a
LOGO treatment of arithmetic and algebra.

4.1 Design and Operation of the Course

Course Design

We chose to develop a course in introductory algebra because
most high school students have enormous difficulties with formal
concepts and problem-solving in this subject. Moreover, much

of the content of introductory algebra can be naturally treated
in a thinly disguised form through teaching LOGO. The algebraic
concepts of variable, literal, formula, equation, etc. have
conceptually very clear analogs in LOGO. Thus, the concept of
building LOGO things and referring to them by name is used to
introduce the concept of variable. The LOGO concepts of condi-
tional operation and predicate are us=ed to introduce the mathe-
matical idea of equation, and the LOGO concept of procedure is
used to introduce the mathematical idea of funetion.

-124-

D et g ey

S b e ey B

Report No. 1889 Bolt Beranek and Newman Inc.

We gradually made the transition from the teaching of LOGO to

traditional material by programming problems with a more numeri-
cal flavor and with a structure biased towards algebraic ideas
(for example, by the construction of "search" programs to find
objects - numerical or not - to satisfy given sets of conditions).
After experience with these programs, students were introduced to
algebraic procedures for solving equations. These gave rise to

. a new set of programming projects, to solve algebralc equations

] by symbolic methods.

Operation

f Six computer terminals were installed in the classroom. The

t students' time was spent partly in classroom discussion, partly
in designing programs, and partly in working with these programs
at the computer terminal. They did most of their computer work
individually but sometimes worked in pairs. The scheduling of
time for students among these three classroom activities varied
from day to day. Typically a student spent about half of the
period in classroom discussion and half in writing and debugging
programs, but there were occasional days, not liked by the
students, in which they did not use the computer terminal at all.

The individual student work at the computer terminal was closely
integrated with the teaching presentation. Some of the work at

the terminals was relatively unstructured; some work assignments

were very tightiy specified. The practice varied among the
teachers and, for a given teacher, across the various units
taught.

Report No. 1889 Bolt Beranek and Newman Inc. i

g 4.2 LOGO Teaching Materials

The teaching objective of the initial weeks of the course was to
impart fluency in the use of LOGO. A detailed outline of this
part of the course is given next. The work was organized into
three overall phases covering (1) the formal elements of LOGO
'g programming, (2) debugging techniques and practice in their use,

and (3) various projects to consclidate and apply the concepts
treated.

Samples of the classroom presentations, laboratory assignments,
; and students' work are shown in subsequent pages.

R

Course Qutline

Week Topics ;
1 Computer Languages; Formal Instructions; Interactive i

Operation of a Computer; The LOGO Language; LOGO Things, ;
Words, Sentences, Literals, Names; The PRINT Command; 3
Operations on Things; Naming; The Operations FIRST, LAST, {
BUTFIRST, BUTLAST, COUNT. ﬁ

2 The EMPTY Word; SUM and DIFF; Inputs and Outputs; Chaining :
of Opérations; Order of Operations; Correcting Typing
Errors, Backslash, Rubout; Bugs.

TR e WELSTE T RT e a6

3 Standard Bugs, Giving Names to Bugs; Describing the
action of a given instruction; Writing an instruction
witlch has a given effect; Sequences of instructions, ;
Procedures; LOGO Programs; Writing and Running of Programs. é

-126-

Report No. 1889 Bolt Beranek and Newman Inc.

Week Topics

T R T

I Listing of Programs; Program Editing; Writing programs
which have prescribed effects; Checking programs with test

inputs; Simulating the operation of a program. f

5 The Conditional Operation and Tests; Simple Recursive
Procedures; Recursive Programs with Tests.

6 Simulating the Operation of Recursive Programs; Recursively
Defined Commands and Operations. The TRACE Command.

7 Chaining of Procedures; Embedding of Procedures; Debugging %
Problems. .
8-9 Debugging Aids - Little Men Pictures, Round-Analysis; &

Storing and Retrieving of Programs - LOGO Filing
Facilities.

10-11 Building Program Complexes; Projects; Interactive 1
Programming - Game-playing and Quiz programs; Message iE
Coding and Decoding programs.

12 Predicates; Special Names; Extension and Generalization il

of Programs; Standard form of Instructions in Recursive
Procedures.

-127-

Report No. 1889 Bolt Beranek and Newman Inc.

Formal Eiements

LOGO was taught to “i¢ seventh-grade students in a graduated
presentation seque ¢e proceeding from the simplest elements,
through instructions and expressions compounded from the elemen-
tary (built-in) LOGO operations, to complex and sometimes highly
recursive procedures bullt as sequences of instructions. The
first five weeks of the course were primarily devoted to teach-
ing the formal structure of LOGO. Examples of the teaching
materials, in the form of classroom assignments and laboratory
work at the computer terminal, follow.

The first sample, Tips on Using the Teletype, was cne of many
handouts describing LOGO and its use. Six assignments follow
this. The first three - CHALLENGE, NAMING THINGS, and A CODED
MESSAGE FROM NANCY - are representative examples of numerous
exercises given to the class in writing instructions and making
and using names. The last of these assignments was: make up a
message with LOGO instructions. Shown here is the response
written by one of the students, Nancy. The students liked to
exchange such "secret" LOGO messages.

Much of the elementary formal material used in the Muzzey class-
room was similar to that used in the elementary school work at
Emerson (described in the previous section of this report),
though the form of the presentation was different. (The elemen-
tary school presentations was largely in the form of programmed
lessons.) During the first part of their course, however, the
seventh-grade students had more work with procedures, including
somewhat more diffilcult procedures, than did the elementary
school children. The last three assignments included here con-
cern work with writing procedures.

-128-

Rebort No. 1889 Bolt Beranek and Newman Inc.

The first of these, SOME INCOMPLETE PROCEDURES, is an exercise
in completing the definition of some functions. Included is a

k)

"silly" function whose output is independent of its input. The
assignment on SOME TESTING PROCEDURES is somewhat more open-
ended. The student 1s to write procedures to perform various
specifled tests. He 1s then to write several programs which

use such testing procedures.

The last assignment, TWO PROCEDURES TO COMPLETE, requires the
student to incorporate numerical test operations, such as
GREATER, in interactive procedures.

Some original student work along these lines is reproduced
followlng these assignments.

-129-

Report No. 1889 Bolt Beranek and Newman Inc.

Tips on Using the Teletype

In many ways the teletype works like an ordinary electric type-

e T VR AR T T T T A A

writer. However, there are some differences which you will need
to know.

1. The teletype types only 1in capital letters. You will
need to use the SHIFT key to obtain such symbols as
(,), #, ", ete.

2. If you make a typing error, do not worry! There are
several ways to correct errors.
a. To erase a single letter at a time -- press the
backslash key (\).
b. To erase a word at a time -- press the CONTROL
key and the letter W.
¢c. To erase a line -- press RUBOUT key.

3. If you are typing in something that is too long for one
line, press LINEFEED and continue typing after the
carriage has returned.

4, When you press the RETURN key you signal to the computer

; that you have completed the line of typing.

g 5. There 1is no back space on a teletype. If you have put
in a space where you do not want a space, you must

erase the space in the same way you would erase a mis-
typed letter -- by pressing the BACKSLASH key (N\).

TR i S RO R N E SRS

Report No. 1889 Bolt Beranek and Newman Inc.

. =
~
<

i

o
-~

CHALLENGE!!!!

Can you make up LOGO instructions which will obtain the responses

shown using ihe words given? R
. Computer
. Word v Response
EXAMPLE: "LIGHT" 5L © H
One instruction might be: PRINT LAST OF BUTLAST OF "LIGHT"
Desired Computer
Word You Are to Use Response
1. "FRIEND" R
PRINT FIRST ¢F BUTIEIRST oF "FrRIEAND”
2. "DEAR" EA
PRINT PULEIRST 0F Bul tAsT of "HEAR”
PRINT wogd 0F BUTFIRST OF "DEAR"AND tAST e F BUTLhsT
3. ma or ”05/‘? :{h
PRInT BUTepsT £/~ A
PRINT ZLT FIRST oF "A”
. "BAR" BARB
> i LA ey \“: 'v" / s - ! 4 u
PRINT WeR ¢F RBAR AND FIR<T 2F BAKR i
5. "My " YM

PRINT WoRs 2F t#sT ¢F "MY" Axd FIRsT =& ‘My”
= My AND FIRST

PRYT wWeRD of BUrFiRLI™ ZF
oF ‘my”

=131~

Report No. 1889 Bolt Beranek and Newman Inc.

NAMING THINGS

Type the following CALL instructions to the computer. How do

you think the computer should answer if you typé in the following
PRINT instructions. Make all your responses first -- then check
with the computer.

CALL
THING: "LUCY"
NAME: "DOCTOR"
CALL
THING: "PATTY"
NAME : "ROPE JUMPER"
CALL
THING: "SILLY"
NAME: nLucy"
Read carefully before making your responses!
Computer
Instruction Your Response Response
PRINT "DOCTOR" DoCcTOR
PRINT THING OF "DOCTOR" LUCY
PRINT THING OF THING OF "DOCTOR" spceL Yy
PRINT "ROPE JUMPER" o TLMPER
PRINT THING OF "ROPE JUMPER" PATTY
PRINT THING OF THING OF "ROPE JUMPER"/me EmpPT D)
PRINT THING OF "LUCY" Sty
PRINT THING OF THING OF "LUCY" (Tﬁf’;QMPIYlacRQ)

~132-

£ M T A T S

Report No. 1889 Bolit Beranek and Newman Inc.

| A CODED MESSAGE FROM NANCY
Some names to give the computer:

CALL CALL CALL
THING: "HE" THING: "TYPE" THING: "EVERYTHING"
NAME: "SHE" NAME: "PRESS" NAME : "NOTHING"
CALL CALL CALL
THING: "TELL" THING: “you" THING: "IT"
NAME: "APPLE" NAME: "ME" NAME: "HER"
CALL

THING: "ASK"
NAME: "TWo"

],’2HE 1EL fE’TYPf IELI:,7S' ‘/%_L)

LVERY TIHIIN G YL AsK
9 10 11 12

INSTRUCTIONS :

1. PRINT "o T

2. PRINT /SHE/ HE

3. PRINT BUTLAST OF /APPLE/ T E L

4, PRINT "E" | =4

5. PRINT /PRESS/ '7-1 P

6. PRINT /APPLE/ FELL

7. PRINT "s" S.

8. PRINT /ME/ Yoo

9. PRINT /NOTHING/ FVvERYTHING

10. PRINT /ME/ Vel

11. PRINT /TWO/ H oK

12. PRINT /HER/)T

-133=-

e 407yt < R RS
Tian

e T SR

e i) v
S A ER Y

L T T e e e

Report No. 1889 Bolt Beranek and Newman Inc.

SOME INCOMPLETE PROCEDURES

Here are some procedures for you to look at. Below each procedure
are some examples of what the procedure does. However, some of

the instructions are missing. Your job is to study what the
procedure does and see if you can fill in the missing instructions.

(1) (2)

TO ARG /X/ . TO TOP /X/
10 PRINT FIRST OF /X/ b10
15 : END
END f TOP DEFINED
ARG DEFINED - |
ARG "APPLE" ' PRINT TOP "TELL ME A STORY"
A 'ME, TOO
E
i
ARG "HiLLO" ' PRINT TOP "I LIKE CANDY"
H | ;ME, TOO -
0 i
|
ARG "T" | PRINT TOP "THROW HIM OUT"
T iME, TOO

T |

; r-—-——«-a:: LT

B B SN S s i i s

A £ e Lt S LT o
Rt s S R o "

Report No. 1889

(3)

TO JOB /X/
10 PRINT FIRST OF /X/
15 PRINT LAST OF /X/

20

END

JOB DEFINED

PRINT JOB 26

PRINT JOB 489

PRINT JOB 3

Bolt Beranek and Newman Inc.

(4)

TO HOE /X/
10 PRINT FIRST /X/

20

30 RETURN HOE /X/
END
HOE DEFINED
PRINT HOE "GREEN"
G

REEN

REEN

REEN

G

I WAS AT LINE 20 IN HOE
PRINT HOE 100000

1

00000

00000

1

I WAS AT LINE 20 IN HOE

Report No. 1889

SOME TESTING PROCEDURES

Write programs for the following:

1. Procedure
2. Procedure
3. Procedure
., Procedure
5. Procedure
6. Procedure
7. Procedure
8. Procedure

to
to
to
to
to
to
to

to

compare two

compare two

find out
find out
find out
find out
find out

find out

Using a testing procedure

be used.

if
if
if
if
if

if

to

Bolt Beranek and Newman Inc.

words to see if they are the same.
words to see if they have same count.
two words have same first letter.
word begins with double letter.
word has same first and last letters.
a word begins with a "b" or a "c".
word begins with "bl".

a number 1s even or odd.

£ind out if another procedure should

1. If word ends in "ed", remove "ed".

2. If word begins with bl, change bl to sl.

3. If number is even, double it; if number is odd, subtract 1

from it.

L. If letter is vowel, print "TRUE"; otherwise, print "FALSE".

5., If word begins with a vowel, print it; otherwise print
"BAD WORD".

Report No. 1889 Bolt Beranek and Newman Inc.

TWO PROCEDURES TO COMPLETE

1. OBJECT OF PROCEDURE:

A. This procedure requests that the player type in a number.

B. It then requests that the player type in a different
number.

c. It compares the two numbers typed in to see which is
larger.

D. If the first number is larger than the second number,
it returns "THE FIRST NUMBER IS LARGER THAN THE SECOND
NUMBER".

E. Otherwise, it returns "THE SECOND NUMBER IS LARGER THAN
THE FIRST NUMBER".

Here is the beginning of the procedure. You complete and test
it.

TO COMPARE

1¢ PRINT "TYPE IN A NUMBER WHEN YOU SEE * " {
2¢ REQUEST "FIRSTNUMBER" |
3¢ PRINT "TYPE IN A DIFFERENT NUMBER NOW."

4@ REQUEST "SECONDNUMBER"

RO T g

) You complete the rest of the procedure.

-137-

Report No. 1889 Bolt Beranek and Newman Inc.

2. OBJECT OF PROCEDURE:

A. This procedure requests that the player type in a
number.

B. It then tests to find out if the number is between 100
and 1000.

C. If the number is less than or equal to 100, it returns
"YOUR NUMBER IS LESS THAN OR EQUAL TO 100."

D. If the number is greater than or equal to 1000, it will
return "YOUR NUMBER IS GREATER THAN OR EQUAL TO 1000."

E. If the number is between 100 and 1000, it will return
"YOUR NUMBER IS BETWEEN 100 AND 1000."

HINT: You will need to write more than one test question in
this procedure.
TO0 NUMTEST

1¢ PRINT "TYPE IN ANY NUMBER WHEN YOU SEE #* "
28 REQUEST "NUMBER"

You complete the procedure.

Report No. 1889 Bolt Beranek and Newman Inc.

Illustrations of Student Work

The following typescripts show a student's work writing three
procedures. The first one, GAME, is a test procedure which
returns "YES" if its input is a 3-letter word (or a 3-word
sentence), and "NO" otherwise.

The second one, SPLITTHREE, types the first, second, and last
letters of its input (if the input is a word, or the first,
second, and last words if its input is a sentence) vertically
down the page. This procedure uses another procedure, SECOND,
as part of its definition.

The last of the three procedures, THREE, uses the other two. It
performs GAME to test whether or not to perform SPLITTHREE.

«TO GAME /Y/

>1ff 1S /Y/ 3 LETTER WORD (A typical early bug. The inten-
tion is clear but 1t was not
expressed as a legal LOGO
instruction.)

>1@ IS COUNT /Y/ 3 (It was immediately fixed)

>2f IF YES RETURN YYES"

»30 IF NO RETURN "NOY

>END

GAME DEFINED

+«PRINT GAME OF "CAT"
YES

«PRINT GAME OF "LONGWORD"
NO

+<P GAME OF "ELEPP"
NO

-~139-

Report No. 1889 Bolt Beranek and Newman Inec.

<P GAME OF "THREE WORD SENTENCE" (GAME is tested with sen-]
YES tences as well as words)]
<P GAME OF FIRST OF "THE GRASS IS GFRREEN'" (And with outputs 3
YES _ of operations on

<P GAME OF "MOI" sentences) g
YES 4
+P GAME OF '"123" (It still works with words) ;
YES ‘ M

TO SPLITTHREE /A/
12 PRINT FIRST OF /A/

13 PRINT SECOND OF /A/ (He incorrectly assumed that there

14 PRINT LAST OF /A/ was a bullt-in LOGO procedure,

END SECOND)

+«SPLITTHREE OF "TwoO'" (SPLITTHREE started out all right;

T it printed the FIRST OF "TWO";

SECOND NEEDS A MEANING. tnen 1t ran into & problem, and

I WAS AT LINE 13 IN SPLITTHREE : stopped.)

“ .

TO SECOND /A/ (The student then wrote %‘
12 RETURN FIRST OF BUTFIRST OF /A/ a SECOND procedure) 1
END

«SPLITTHREE "TWO" (Now SPLITTHREE works)

T :
W 07
O 3
+SPLITTHREE "THREE"

T]
H i
E

+SPLITTHREE '"ABRA CADABRA"

ABRA

CADABRA 5
CADABRA ;

“«

+«TO THREE /WORD/

>18 1S GAME OF /WORD/ "YES" 3
>2f IF NO PRINT "NO" .
>3@¢ IF YES SPLITTHREE /WORD/ |
>END

THREE DEFINED

~140-

Report No. 1889 Bolt Beranek and Newman Inc.

+<THREE '"123"

1

2

3

+«THREE '"ONE TWO THREE"
ONE

TWO

THREE
+THREE ''ONE"

0

N

E

<THREE " THREE"
NO

<«

In responding to the second part of the assignment TWO PROCEDURES
TO COMPLETE, the teacher expected that students' procedures would
use the GREATER operation. (The output of GREATER OF /M/ AND /N/
is /M/ if /M/ > N; else it is /N/.) The students did not like
this notation for GREATER because they were used to the idiom

/M/ is GREATER THAN /N/. (At the same time, in a classroom vote,
they overwhelmingly rejected the option of replacing GREATER OF
/M/ AND /N/ with MAXIMUM OF /M/ AND /N/, though the latter did
not conflict with familiar usage. Possibly this was because

they didn't like any changes in the language. They were used to
the existing instructions and preferred these to new and uncertain

ones, even if the new ones appeared to be better.)

Two students found a way of getting around this problem. Note
how they avolded the use of GREATER in the following procedure.

TO NUMTEST

1 PRINT "TYPE IN A NUMBER WHEN YOU SEE #

2 REQUEST /NuUM/

30 1S COUNT OF /NUM/ 1

4g IF YES RETURN "YOUR NUMBER IS LESS THAN 14"
50 IS COUNT OF /NUM/ 2

6¢ IF YES RETURN "YOUR NUMBER IS LESS THAN 14g"
7¢ 1S COUNT OF /NUM/ 3

8¢ IF YES RETURN "YOUR NUMBER 1S LESS THAN 1ggg"
9¢ RETURN "YOUR NUMBER 1S 1¢@# OR LARGER"

END

-141-

e e B

= L e SRR T v o s

Report No. 1889 Bolt Beranek and Newman Inc. %

Independence and originality were always encouraged. After the
students were praised for their clever idea, they were asked to i
write an alternate procedure, this time using GREATER. Their ;
first effort, called NUM, was as follows.]

TO NUM :
1@ PRINT "TYPE IN A NUMBER WHEN YOU SEE*" :
2 REQUEST "N"]
3¢ IS /N/ GREATER "1ggg"

4@ IF YES RETURN "YOUR NUMBER IS 1@g@g@ OR LARGER" 1
50 IF NO RETURN "YOUR NUMBER IS LESS THAN 1ggg"]

END
It has the standard GREATER bug in line 3@. After a major de-
bugging episode, line 3¢ was changed to:

3¢9 IS /N/ GREATER OF /N/ AND "1ggg"

Now the NUM procedure wcvked. The students retained NUMTEST 1
which they obviously preferred in their files.

There was a great deal of similar work of this kind during the]
first weeks of the course. The early work was designed primarily ;
to help students become proficient in the elements of LOGO
programming. As the students attained a modicum of fluency in
LOGO, they were introduced to constructive problems of somewhat
richer structure requiring more problem-solving "know-how".

| ~142-

Report No. 1889 Bolt Beranek and Newman Inc.

Heuristic Work

Making the formal elements of LOGO programming accessible does
not guarantee that students will be able to write their own

programs to solve problems, or even to understand relatively

simple and transparent programs representing solutions. Along
with teaching programming as a formal language, we need to teach
students how to simulate the operation of a program to under-
stand what it does, to decide if a program "works", and to find
errors or "bugs" in programs that do not work.

A large part of the course was spent on working with programs
that did not quite do what they were supposed to, and trying to
fix (or "debug") them. This work has very direct relevance to
the teaching of mathematics, not merely programming. The process
of "debugging" programs gives students a rich base of personal
experiences with the activity of solving mathematical problems.
It enables them to confront and better understand their own
thought processes. Thus, it is a valuable means of contributing
to teaching the informal, intuitive, heuristic aspects of mathe-
matical thinxking and work.

A first step in teaching students debugging is teaching them to
model and simulate the operation of a program. Traditionally,
flow diagrams are used to present an overall model of a program.
Since these do not give a good picture of the operation of
recursive programs, we developed a new kind of diagram - "little
men" plctures - to help students get a clear picture of how LOGO
programs work. These are discussed next, in conjunction with
the children's classroom and laboratory assignments. To illus-
trate the use of these diagrams, consider the procedure REVERSE,

-143-

Report No. 1889 Bolt Beranek and Newman Inc.

REVERSE is a recursive operation whose output is the reverse of

its input (i.e., its input written backwards). Thus, REVERSE OF
"CAT" is "TAC".

TO REVERSE /WORD/
1§ TEST IS /WORD/ /EMPTY/
2@ 1F TRUE OUTPUT /WORD/

3@ OUTPUT WORD OF LAST /WORD/ AND REVERSE OF BUTLAST /WORD/
END

The procedure as written is too elegant - by being too compact
its structure is hidden. We can make it more transparent by
paraphrasing it into a form whose parts are more visible,
functionally separable, and so nameable. For example,

TO REVERSE /WORD/

1§ TEST IS /WORD/ /EMPTY/ Check
2@ 1F TRUE OUTPUT /EMPTY/ (Stop Rule)
38 MAKE
NAME: '"NEWWORD" \ Preparation
THING: BUTLAST OF /WORD/
LP MAKE
NAME: "“LETTER"

THING: LAST OF /WORD/

5¢ OUTPUT WORD OF /LETTER/ AND REVERSE OF /NEWWORD/ Action
END

We now illustrate the use of "Little Men" diagrams in modeling
the operation of this procedure.

Little Men Pictures

Suppose I give the instruction PRINT REVERSE OF "CAT". In the
first frame of the picture you see me calling a PRINT man and
telling him what to print:

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT REVERSE REVERSE
ME oA PRINT "CoAT™
Y .)

N

The PRINT man (he is labeled number 1) grabs the phone as soon
as he Sees the word REVERSE, and asks the REVERSE man (his number
is 2) for help.

The REVERSE man carries out his procedure to the point where he
needs to ask for help from another REVERSE man.

REVERSE TO REVERSE

/WORD/ IS "CAT"
14 TEST IS 'CAT" /EMPTY/
No ("CAT" is not the empty word)
3§ MAKE
NAME: '"'NEWWORD"
THING" BUTLAST OF '"CAT"
which is "CA"

Lg MAKE
NAME: "LETTER"
THING: LAST OF "CAT"
which is "T"
5¢ OUTPUT WORD OF "T' AND REVERSE

OF "CA" _‘h‘-——/;>
/—

I'll call a reverse

man to find out what
REVERSE of '"CA" is, ' (:REYgiﬁE;j)
so I can finish my Jjob. Q
44// 4 44‘“*---_-~

145~

el etme

o 2 R
g

Report No. 1889 Bolt Beranek and Newman Inc.

REVERSE TO REVERSE

/WORD/ IS "CA"
”,,,//”"/’ 1§ "CA" is NOT /EMPTY/
30 /NEWWORD/ is "cC"

4@ JLETTER/ is "A"
5§ OUTPUT WORD OF "A"

AND REVERSE OF '"'C"

W

This REVERSE man (number 3) reads his procedure and carries on
0.K. until he sees his line 54.

He needs a new REVERSE man to find REVERSE OF "C".

(:REVERSE4:> TO REVERSE
non REVERSE T WORD/ 1s "o"
10
- il .

50 OUTPUT WORD OF "C"
AND REVERSE OF /EMPTY/|—

This new REVERSE man sees in his line 5@ that he needs a REVERSE
man to help him finish his job by finding REVERSE OF /EMPTY/.

REVERSE TO REVERSE
/EMPTY/ REVERSE /WORD/ is /EMPTY/

1§ /WORD/ is /EMPTY/!
Vet 20 OUTPUT /EMPTY/

This REVERSE man (number 5) finishes his job and outputs his
answer, which is /EMPTY/, to the man that called him.

o s =

" . e T e e e e o e R (A S T S S S S SR S A SR A e e
1 i e tmmew
P:;{

Report No. 1889 Bolt Beranek and Newman Inc.

REVERSE

The word yo REVERSE
asked for is
/EMPTY/

~—~—. _%’"

Now, REVERSE man 4 can finish his line 5@ and give his answer to
the man who called him, REVERSE man 3.

REVERSE REVERSE

Now I knhnow my
f;i%é\ answer - it's
the word "e /g_

Similarly:

REVERSE REVERSE PRINT
Thank you. That Roger! 8o
3 means my answer 1s my answer
"AC" is "TAC"
»J

TAC

The PRINT man prints the answer TAC for me.. Voila! I hang up.

Report No. 1889 Bolt Beranek and Newman Inc.

Exercises on Little Men Pictures

In these exercises we shall practice using the little-men-and-
telephone idea to explain how a procedure works. As an example
we use a procedure called TO XJOIN.

Purpose of TO XJOIN

This is a building procedure that extends a word by putting on
extra X's in front of 1it.
Example: "CAT" is extended to "XXXXXCAT"

Inputs of TO XJOIN

We have to tell the procedure one thing: the original word (so
it knows where to start). So the title will be

TO XJOIN /WORD/
Examples:

PRINT XJOIN "ANXIBAR"

XANXIBAR

PRINT XJOIN "NOMOROOM"
NOMOROOM

PRINT XJOIN "I"
XXXXXXXTI

The Procedure

TO XJOIN /WORD/

1§ IS COUNT OF /WORD/ 8
(If it is then /WORD/ is the right length and
can be returned)

2¢ IF YES RETURN /WORD/
(If no, then we will extend /WORD/ by adding "X"
in front of it)

3¢ CALL
THING: WORD OF "X" AND /WORD/
NAME: '"NEWWORD"

(Now we try the same thing again with /NEWWORD/)
4L RETURN XJOIN OF /NEWWORD/
END

~148-

Report No. 1889 Bolt Beranek and Newman Inc.

Further Exercises

Consider another procedure called to EXPAND. This is a building
procedure like XJOIN, but it has three inputs:
(1) The original word, so it knows where to start.
(2) The letter to be put on the front of /WORD/. (In XJOIN
this was always "X".)
(3) The final length desired, so it knows when to stop. (In
XJOIN this was always 8.)
So the title will be
TO EXPAND /WORD/ /LETTER/ /LENGTH/
Examples:
PRINT EXPAND "BOX" AND "A'" AND 4
ABOX

PRINT EXPAND "S" AND "X" AND 19
XXXXXXXXXS

Write the procedure TO EXPAND. Then make a little men picture
to show how the procedure works, given the instruction

PRINT EXPAND OF "DOG" "X" 5.

Round-Analysis

The analysis by "little men" becomes tedious and distracting
once the principle is understood. Round-analysis, illustrated
here for the same REVERSE procedure, is essentially a compact
version of the "little men" diagram expressed in a form that is
faster to write out.

-149-

Report No. 1889 Bolt Beranek and Newman Inc.

PRINT b3 PRINTS "TAC"
Round 1 REVERSE OF "CATY
' /WORD/ = Y“CAT"
/NEWWORD/ = "CA"
JLETTER/ = "T"

OUTPUTS WORD OF '"'T" AND = "TAC"

Round 2 REVERSE OF "CA"
- /WORD/ = "CA"
/NEWWORD/ = "cC"
JLETTER/ = A"
OUTPUTS WORD OF "A" = "ACY

Round 3 REVERSE OF '"c"

/WORD/ = "C"

/NEWWORD/ = /EMPTY/

JLETTER/ = %C"

OUTPUTS WORD OF "C" ANE) = "¢t

Round 4 NREVERSE OF /EMPTY/
/WORD/ = /EMPTY/
OUTPUTS /EMPTY/

The TRACE Command

The TRACE command in LOGO allows the student to see the sequence
of inputs and outputs as these develop in the course of running
a program. Thus, TRACE automatically performs one of the main

functions of round-analysis. The use of TRACE on the procedure
REVERSE with the input "CAT" is shown in the following printout.

Report No. 1889 Bolt Beranek and Newman Inc.

TO REVERSE /WORD/
10 TEST IS /WORD/ /EMPTY/
20 IF TRUE OUTPUT /EMPTY/
30 MAKE
NAME: "'NEWWORD'
THING: BUTLAST OF /WORD/s
40 MAKE
NAME: '"LETTER"
THING: LAST OF /WORD/
59 OUTPUT WORD OF /LETTER/ AND REVERSE OF /NEWWORD/
END

«TRACE REVERSE
«PRINT REVERSE OF '"CAT'"

REVERSE OF '"'CAT"
REVERSE OF ''CA"
REVERSE OF ''C"
REVERSE OfF '"
REVERSE OUTPUTS "
REVERSE OUTPUTS °*'C"
REVERSE OUTPUTS ‘AC"
REVERSE OUTPUTS ' TAC"
TAC

-

The procedure TO REVERSE is listed first. The instruction TRACE
REVERSE is then executed. This informs LOGO that REVERSE is to
be traced when it is used subsequently (until the TRACE is erased).
When the instruction PRINT REVERSE OF "CAT" is executed, the
successive calls of REVERSE are listed as they are made.

First the program calls for REVERSE OF "CAT", then for REVERSE OF
"CA", "C", and "" (the empty word). As the output corresponding
to each call is made and passed back, it is listed by TRACE.

Each output is listed on a line having the same indentation as
the corresponding call. Finally, the first "REVERSE man",
REVERSE OF "CAT", can make its output "TAC" and pass it back to
PRINT, which prints it.

The assignments that follow illustrate some of the debugging
problems given to the class.

Report No. 1889 Bolt Beranek and Newman Inc.

HELP!!!

My procedure CT doesn't work quite as well as it should.
THIS IS WHAT I WANTED IT TO DO:

«PRINT CT "HARD"

THIS WORD HAS AT LEAST 3 LETTERS.
«PRINT CT "GO"

THIS WORD HAS 1 OR 2 LETTERS.
«PRINT CT "DOG"

THIS WORD HAS AT LEAST 3 LETTERS.
+~PRINT CT "I"

THIS WORD HAS 1 OR 2 LETTERS.

‘=

THIS IS THE PROCEDURE I WROTE:

«TO CT /WORD/

>1¢ IS COUNT /WORD/ "1"

>2¢ 1S COUNT /WORD/ "2"

>3@ IF NO RETURN "THIS WORD HAS AT LEAST 3 LETTERS."
>4g IF YES RETURN "THIS WORD HAS 1 OR 2 LETTERS."
>END

ET DEFINED

THIS IS WHAT ACTUALLY HAPPENED WHEN I USED MY PROCEDURE:

«PRINT CT ""HARD"

THIS WORD HAS AT LEAST 3 LETTERS.
«PRINT CT "GO"

THIS WORD HAS 1 OR 2 LETTERS.
«PRINT CT "DOG"

THIS WORD HAS AT LEAST 3 LETTERS.
«PRINT CT "I"

THIS WORD HAS AT LEAST 3 LETTERS.

b

THE LAST ANSWER IS WRONG.

PLEASE HELP ME FIND THE BUGS!

~152=

Report No. 1889 Bolt Beranek and Newman Inc.

MORE HELP!!!
This procedure leaves some funny spaces at the end.
THIS IS WHAT I WANTED IT TO DO:

+DRAW "XXXXXXX"
XXXXXXX

XXXXXXX

XXXXXXX

XXXXX

XXXXX

AXXXX

XXX

XXX

XXX

4+ X X X

THIS IS THE PROCEDURE I WROTE:

+«TO DRAW /X/

>10 PRINT /X/

>2@ PRINT /X/

>30 PRINT /X/

>4g IS COUNT OF /X/ @

>5¢ IF YES RETURN "M

>6f RETURN DRAW OF BUTFIRST OF BUTLAST /X/
>END

DRAW DEFINED
s

THIS IS WHAT HAPPENED WHEN I USED IT:

+«DRAW "XXXXXXX"
XX XXXXX
b XXXXXXX
XXX XXXX
XX XXX
XXX XX
XX XXX
XXX

T XXX

o XXX

X

: X

i X

(Can you get rid of all these spaces for me?)

-153=-

o B ik s R S e AR - 4 T

T TANE R e L TR - F

Report No. 1889 Bolt Beranek and Newman Inc.

STILL MORE HELP!!!

This procedure COUNTLESS is giving me trouble.
THIS IS WHAT I WANTED IT TO DO:

+PRINT COUNTLESS "ABCDEF"
ABCDEF
| 6
‘ BCDEF
! 5
CDEF
L
DEF
3
EF

b=

THIS IS THE PROCEDURE I WROTE:

+«TO COUNTLESS /WORD/

>1¢ 1S /WORD/ "M

>2@ 1F YES RETURN ""

>3 PRINT /WORD/

>4g PRINT COUNT OF /WORD/
>58 COUNTLESS /WORD/

>END

COUNTLESS DEFINED
<

THIS IS WHAT ACTUALLY HAPPENED WHEN I USED MY PROCEDURE:

«>RINT COUNTLESS "ABCDEF"
ABCDEF

6

ABCDEF

6

ABCDEF

6

ABCDEF

6

I WAS AT LINE 4@ IN COUNTLESS.
<

PLEASE HELP!

Report No. 1889 Bolt Beranek and Newman Inc.

An example of a standard situation where in the process of fixing
one bug another is created, is shown in the following student's
work in writing his own COUNTLESS. (He chose to start with his
own program instead of editing the teacher's program shown on

the previous page.)

TO COUNTLESS /WORD/

19 PRINT /WORD/

2§ PRINT COUNT OF /WORD/

3% COUNTLESS BUTFIRST OF /WORD/
END

(The last line fixed the bug in the assigned program.)

+COUNTLESS "ABC"
ABC
3
BC
2
C
1
(But it didn't stop)

(Alternate printouts of the empty word
and its count, £.)

. = =

(After several lines of repetition,

the break key was hit.)

I WAS AT LINE 2@ IN COUNTLESS
(The student had forgotten to include a stopping rule.
He realized this and repaired his program.)

«EDIT COUNTLESS

>25 IS COUNT OF /WORD/ '"1"

>27 IF YES RETURN /EMPTY/

>END

COUNTLESS DEFINED

<~COUNTLESS '"aABC"

ABC

3

BC

2

C

1

<
The next assignment, shown on the following two pages, is an
exercise in Little Men diagramming. (The XJOIN procedure was

discussed above.)

-155=-

START

LASTWO
CTREE”

Report No. 1889

A Worked Qut Example of Little Men

TO LASTWO /X/

1§ IS COUNT OF /X/ 2
28 IF YES RETURN /X/

THING: BUTFIRST /X/

Pl SRl TP

NVow
& an tell the
Mman whe culied

et A St

we“'l- /A‘/ s "EE“ 5o The
answer To g is YES, Now
I have tedo af. Jg says
to RETCRN /x| To The man
who called me = so LN

retorn “EE" to him.
—VMW

LASTWC

Bolt Beranek and Newman

R L Y

LASTWO
MAN
3

"EE” is "

38 CALL
NAME : X
4 RETURN LASTWO /X/
END
EE Gocd!
. L Ty
Ncocw &L &4
de my J*’b"

') priat

cCan yivye the

LASTwe oF
CTREE” ;8 “CE*

LASTWO
"TREE"??

'\\\\SQNN

o .
' PINE! New 4

man (he called
me a1 ANsSwer

/h

/Lastwo ¢E\
", gt clEEl;
\Pgee” is "EE",

Y

kASTWC

- cow o4

"REE “22

Tty

Wmm! setis see what I'm
Suppened le de. /A 1s “rree
The answer 6 i 1a NO 38 &
won't de af, 3p tells me Tthat
741 45 new “REE” Wy says
RETVRN LASTWO YREE* buT T
cant do that vntdl T Find

e O7 &Uhair l.r is.

LAST wWeo

“EE”??

’?b bcl./ /rf/
13 "REE” [The
answer jo, Ig s
NE s¢ 1 den't de
l¢t A 3..1/.5 Te
call "EE* "R 4 p
sdys RETLRAN
ILASTWC “EE“< buT
Finst L mustl find
oul what rhat ta.

O i

- —— ——— sna %

Report No. 1889 Bolt Beranek and Newman Inc.

Complete This Little Men Picture

TO XJOIN /WORD/ ;
1§ 1S COUNT OF /WORD/ 8 1
2¢ 1F YES RETURN /WORD/
38 CALL |

THING: WORD OF "X" AND /WORD/ %

NAME: "NEWWORD! |
4g RETURN XJOIN /NEWWORD/
END

L Jweid] is

Ans 7o i2?
New
what

START
HERE

v

PRINT XJOIN <%->
OF ' MADAME
91\

XTOoIN ¢F \
/

"MAIAME"? 2

=9

@x‘ MA DAMED

JWeRD/ is
" 4
Arswer to
g
(m&wwo&b/;:y
¢ 1%

N 51 ™

Report No. 1889 Bolt Beranek and Newman Inc.

The procedure XJOIN fails for words with more than 8 letters.
Noting this, a student wrote a modified procedure, XXJOIN, which
is like XJOIN for inputs of 8 letters or less, but which returns
the word itself as its output for any input word with more than
8 letters.

TO XXJOIN /L/

5 CALL

THING: COUNT OF /L/

NAME : "LENGTH"
6 CALL

THING: GQ OF /LENGTH/ AND "8" (GQ, or GREATERQ, is a

NAME : "ANSWER® two~-input predicate which
7 1S /ANSWER/ "TRUE" outputs "TRUE" if the
8 IF YES RETURN /L/ first input is greater
1§ IS COUNT OF /L/ "8" than the second and
20 IF YES RETURN /L/ "FALSE'" otherwise.)
3¢ CALL

THING: WORD OF "X AND /i/

NAME: '"'INW"
4@ RETURN XXJOIN OF /NW/
END

«P XXJOIN OF '"SUPERMAN" |
SUPERMAN i
«P XXJOIN OF "DILLINGER" :
DILLINGER

<P XXJOIN OF "123456789¢g"
123456789¢ 1
«P XXJOIN OF "AXEM "
XXXXXAXE :

<~

~158- ?

Report No. 1889 Bolt Beranek and Newman Inc.

Early Projects

The last weeks of the first part of the course were spent working
on a few projects of somewhat larger scope. The problems were
chosen for their interest to the children as well as for their
value in fostering individual work and helping develop stronger

resources for writing, debugging, and using programs.

One series of projects was in the area of writing interactive
programs - programs in which the user communicates with the
computer in the course of its operation. Examples are
"conversations", question-answering programs, quizzes, etc.
Another series of projects was in the area of message coding
and decoding - in the childrens' parlance, "secret codes".
Examples from teaching materials and student work in connection

with these projects follow.

Interactive Programs

The REQUEST operation 1s necessary for interactive programming
in LOGO. The students were introduced to REQUEST indirectly,
as follows. They were told to try a procedure called LIKES
before looking at the instructions comprising its definition.

Typical typescripts from this use are shown next. (The

student's line of typing is always preceded by an asterisk; all
other lines were typed by the computer.)

Report No. 1889 Bolt Beranek and Newman Inc.

~LIKES (

TELL ME SOMETHING YOU LIKE

*BOYS

SO YOU LIKE BOYS

TELL ME SOMETHING YOU DON'T LIKE
*MR SARNO

I'M SORRY YOU DON'T LIKE MR SARNO
TELL ME SOMETHING YOU LIKE

; XVACATION

] SO YOU LIKE VACATION

. TELL ME SOMETHING YOU DON'T LIKE
X®SCHOOL

I'M SORRY YOU DON'T LIKE SCHOOL
TELL ME SOMETHING YOU LIKE

i “YOU

SO YOU LIKE-YOU

TELL ME SOMETHING YOU DON'T LIKE
::ME

I'M SORRY YOU DON'T LIKE ME

TELL ME SOMETHING YOU LIKE
XSCIENCE

SO YOU LIKE SCIENCE

TELL ME SOMETHING YOU DON'T LIKE
XSCIENCE

] I'M SORRY YOU DON'T LIKE SCIENCE
g TELL ME SOMETHING YOU LIKE

_ : ®*MISSING SCHOOL WHEN I'M NOT SICK
: SO YOU LIKE MISSING SCHOOL WHEN I'M NOT SICK
; TELL ME SOMETHING YOU DON'T LIKE
: XPEOPLE STARING AT ME

i I'M SORRY YOU DON'T LIKE PEOPLE STARING AT ME
TELL ME SOMETHING YOU LIKE

TELL ME SOMETHING YOU LIKE
%FILOWERPOWER AND LOVE

SO YOU LIKE FLOWERPOWER AND LOVE |
TELL ME SOMETHING YOU DON'T LIKE i
XHATE AND DEAD FLOWERS .
I'M SORRY YOU DON'T LIKE HATE AND DEAD FLOWERS

TELL ME SOMETHING YOU LIKE :
%NO CAVATIES]
SO YOU LIKE NO CAVATIES “
TELL ME SOMETHING YOU DON'T LIKE

%CANDY

I'M SORRY YOU DON'T LIKE CANDY

Report No. 1889 Bolt Beranek and Newman Inc.

TELL ME SOMETHING YOU LIKE

#®SCIENCE AND MATH (I THINK THEIR INTRESTING

SO YOU LIKE SCIENCE AND MATH (I THINK THEIR INTRESTING
TELL ME SOMETHING YOU DON'T LIKE

TELL ME SOMETHING YOU LIKE

*1 LIKE ICE CREAM

SO YOU LIKE I LIKE ICE CREAM

TELL ME SOMETHING YOU DON'T LIKE

*1 DON'T LIKE SCHOOL

I'M SORRY YOU DON'T LIKE I DON'T LIKE SCHOOL
TELL ME SOMETHING YOU LIKE

“TELL ME SOMETHING YOU LIKE

SO YOU LIKE TELL ME SOMETHING YOU LIKE
TELL ME SOMETHING YOU DON'T LIKE

*1 LIKE TO SKATE

I'M SORRY YOU DON'T LIKE I LIKE TO SKATE
TELL ME SOMETHING YOU LIKE

<

And so on. The twelve students worked at the teletypes in pairs.

It took fifteen minutes before the first pair could pull them-

selves away from using LIKES and finally look at the procedure

definition itself. (At the end of the class hour, two children

were still generating their long lists of likes and dislikes.

They had to be evicted from the classroom.)

Each of the children then listed the procedure LIKES to see how
it worked.

<LIST LIKES

TO LIKES
1§ PRINT "TELL ME SOMETHING YOU LIKE"

2 REQUEST "LIKE"

3¢ PRINT SENTENCE OF '"SO YOU LIKE' AND /LIKE/

4y PRINT “TELL ME SOMETHING YOU DON'T LIKE"

50 REQUEST "NOLIKE"

6§ PRINT SENTENCE OF "I'M SORRY YOU DON'T LIKE" AND /NOLIKE/
78 LIKES

END

<«

-161-

Report No. 1889 Bolt Beranek and Newman Inc.

All the children were able to work out the operation of REQUEST
though none had seen this instruction previously. To demonstrate
that a student did understand how LIKES worked when he said that
he did, he was given the assignment of writing a procedure
COPYCAT whose effect was to be as follows (the user's typing is
preceded by an asterisk to distinguish it from the computer's).

<COPYCAT

TELL ME SOMETHING
“] GO LOGO

I GO LOGO

TELL ME SOMETHING
“1 LOVE YOU

I LOVE YOU

TELL ME SOMETHING

A typical COPYCAT program:

TO COPYCAT

1§ PRINT "TELL ME SOMETHING"
2¢ REQUEST '"'SOMETHING"

3¢ PRINT /SOMETHING/

4@ COPYCAT

END

After showing that they could write COPYCAT, most of the children
continued on their own to write other interactive procedures
patterned after these models. Examples of some of these are
shown next (in each case the procedure 1s listed and then run by
a student).

TO FOOD

1¢ PRINT "TELL ME THE FOOD THAT YOU LIKE BEST"

2¢ REQUEST '"FOOD"

3§ PRINT SENTENCE OF "SO YOU LIKE'" AND SENTENCE OF /FOOD/
AND '"BEST"

4g PRINT "TELL ME SOMETHING YOU DO NOT LIKE"

50 REQUEST '"NOLIKE"

6¢ PRINT SENTENCE OF "I DO NOT LIKE THAT EITHER" (A bug here)

END

~162-

Report N

TEL
%S T
S0

TEL
*HA
THE
I W

«+

TO
10
20
34
Ly
END

«ME
YOU
“HE
HEN
YOU
*HE
HEN
YOU
“BI
BIL

TO
10
20
34
Ly
50
60
70
END

o. 1889 Bolt Beranek and Newman Inc.

+FOOD

L ME THE FOOD THAT YOU LIKE BEST

EAK

YOU LIKE STEAK BEST

L ME SOMETHING YOU DO NOT LIKE

MBURG

RE IS SOMETHING MISSING ON THIS LINE. (The program stopped

AS AT LINE 6g IN FOOD. because SENTENCE needs
two inputs)

ME

PRINT "YOUR NAME"

REQUEST ''ME"

PRINT SENTENCE OF /ME/ AND "IS SILLY"
ME

R NAME

NRY

RY IS SILLY

R NAME

NRIETTA

RIETTA IS SILLY
R NAME

LLY

LY IS STLLY

AGE

PRINT "TELL ME YOUR AGE"

REQUEST "AGE"

PRINT SENTENCE OF "SO YOU AGE"™ AND /AGE/ (The English

PRINT "TELL ME MY AGE" sentence structure

REQUEST "AGE" is something less

PRINT SENTENCE OF '"SO I AGE" AND /AGE/ than perfect; but

AGE the formal structure
of the program is correct, and, for this student,

this program was a significant intellectual
achievement.)

Report No. 1889 Bolt Beranek and Newman Inc.

+<AGE

TELL ME YOUR AGE
%56

SO YOU AGE 56

TELL ME MY AGE

3:78

SO I AGE 78

TELL ME YOUR AGE

"2

SO YOU AGE 2

TELL ME MY AGE
#1234

SO 1 AGE 1234

TELL ME YOUR AGE
%765432876543545676
SO YOU AGE 765432876543545676
TELL ME MY AGE

«TO SING
>1¢ PRINT "WHAT SONG DO YOU WANT TO HEAR?"
>2@ REQUEST "E"
>3¢ PRINT "I DON'T KNOW THAT ONE PLEASE HUM A FEW BARS FIRST"
>4g PRINT "I CAN'T HEAR YOU HUM LOUDER"
>5¢ PRINT "O K I'LL TRY IT NOW"
>6f PRINT S S S S S S /BELL/ /BELL/ /BELL/ /BELL/ /BELL/
/BELL/ /BELL/
>7¢ PRINT "THAT'S THE BEST I CAN DO"
>END K
SING DEFINED o
< 1

(The effect of the instruction in Line 6f, which prints an
invisible but audible seven-word sentence, is to ring the tele-
type bell seven times.)

+SING

WHAT SONG DO YOU WANT TO HEAR?

“*AMERICA

I DON'T KNOW THAT ONE PLEASE HUM A FEW BARS FIRST
I CAN'T HEAR YOU HUM LOUDER

O K I'LL TRY IT NOW

(At this point it rings the bells)
THAT'S THE BEST I CAN DO
-

Report No. 1889 Bolt Beranek and Newman Inc.

+SING
WHAT SONG DO YOU WANT TO HEAR?
“ANY SONG
I DON'T KNOW THAT ONE PLEASE HUM A FEW BARS FIRST
I CAN'T HEAR YOU HUM LOUDER
O K I'LL TRY IT NOW
(Seven bells again)
THAT'S THE BEST I CAN DO

<

In some instances, these procedures were the first ones wholly
conceived by the children. All the children were very serious
about this work, even when writing procedures that might appear
silly or funny. For some of the children getting a procedure of

this kind to work required (what was for them) a formidable
intellectual effort.

In the next phase of interactive programming, work was done in
connection with various quiz programs. Four partially developed
quiz programs - PREACH, LOGOPART, SPORTQUIZ, and COMICSTRIPQUIZ -
were tried by the students. Sample runs with these programs
follow next. (The student's typing is underscored to distinguish
it from the computer's.)

(A FUNNY PROGRAM)

«~PREACH

THINK OF A NUMBER. TYPE IT WHEN YOU SEE ¥.
%12345

YOUR NUMBER IS 0ODD.

DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
®YES

IT'S BIGGER THAN A THOUSAND.

DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
XYES

YOUR NUMBER IS LESS THAN 12354

DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
“YES

TWICE YOUR NUMBER IS EVEN.

DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
XYES

(continued)

- 5T AT oy

W —

Report No. 1889 Bolt Beranek and Newman Inc.

SORRY, THAT'S ALL I KNOW. I'M A PRETTY DUMB COMPUTER. IF
YOU WANT TO KNOW MORE YOU'D BETTER START ME AGAIN OR GIVE
ME SOME NEW THINGS TO DO.

I GUESS I WON'T WAIT FOR YOU TO START ME.
THINK OF A NUMBER. TYPE IT WHEN YOU SEE ¥.
*34

YOUR NUMBER IS EVEN

DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
®YES

THAT'S A SMALL NUMBER.

DO YOU WANT TO KNOW MORE? TYPE YES OR NO.
:CNO

+<LOGOPART

TYPE ANY WORD WHEN YOU SEE #
XKP
ITLL CALL KP "ANYWORD"

TYPE FIRST OF /ANYWORD/
2K
GOOD FOR YOU!

TYPE LAST OF /ANYWORD/
SORRY, LAST OF /ANYWORD/ IS P
E IN /ANYWORD/

m—

TYPE IN BF OF /ANYWORD/
%K

YOU ARE BRILLIANT

I'LL BET YOU CAN ADD MANY MORE INSTRUCTIONS TO THIS PROGRAM.
<

-166-

PP, o R RRRT IR) o ? -

Report No. 1889 Bolt Beranek and Newman Inc.

<SPORTQUIZ

ARE YOU A SPORTS FAN? DO YOU LIKE BASEBALL? FOOTBALL?
HOCKEY? BASKETBALL? HERE ARE SOME QUESTIONS TO GIVE YOU
A CHANCE TO SHOW OFF WHAT YOU KNOW.

WHAT TEAM WON THE AMERICAN LEAGUE PENNANT THIS YEAR? (GIVE
THE NAME OF THE CITY FIRST AND THEN THE TEAM NAME. EXAMPLE:
CHICAGO CUBS)

“CARNALS

STRIKE ONE. THE DETROIT TIGERS WON THE 1968 AMERICAN
LEAGUE F<SNNANT.

DID THE ST. LOUIS CARDINALS WIN THE WORLD SERIES THIS YEAR?
ANSWER YES OR NO.

*NO

BASE HIT

DO THE BOSTON PATRIOTS PLAY FOOTBALL IN THE NFL OR THE AFL?
XNO

FIVE YARD PENALTY. THE BOSTON PATRIOTS PLAY IN THE
AMERICAN FOOTBALL LEAGUE -- THE AFL.

I THINK YOU PROBABLY KNOW A LOT MORE ABGUT SPORTS THAN I DO.
WHY DON'T YQOU ADD SOME QUESTIONS (AND ANSWERS, OF COURSE)
TO THIS QUIZ? THEN YOU CAN TRY YOUR VERSION.

+<COMICSTRIPQUIZ

ARE YOU A FAITHFUL READER OF THE COMICS? DO YOU CHUCKLE

WHEN YOUR FAVORITE CHARACTER GETS INTO A FUNNY SITUATION?
DO YOU LIKE THE ADVENTURE COMICS? THE DETECTIVE COMICS?

THE TEENAGER COMICS? HERE ARE SOME QUESTIONS TO SEE HOW

LOYAL A COMIC STRIP READER YOU ARE?

THE RED BARON WAS A GERMAN WORLD WAR I HERO. WHO FIGHTS
THE RED BARON IN THE COMIC STRIPS?

®H

IT'S SNOOPY WHO SAYS 'CURSE YOU, RED BARON'

ROBIN IS THE BOY ASSOCIATE OF WHAT COMIC STRIP CHARACTER?
*BATMAN
HOLY COMPUTER! YOU'RE RIGHT.

WHO WAS THE FAMOUS CARTOONIST AND PRODUCER WHO CREATED SUCH
CHARACTERS AS MICKEY MOUSE, DONALD DUCK, AND PLUTO?

L

THE GREAT WALT DISNEY IS THE NAME YOU WANT.

-167-

Report No. 1889 Bolt Beranek and Newman Inc.

NOW IT'S YOUR TURN TO WRITE SOME QUESTIONS ABCUT YOUR
FAVORITE COMIC STRIP CHARACTERS. ADD THEM TO THIS QUIZ

SO
<

WE CAN TRY THE QUIZ OUT ON EACH OTHER.

The students then listed each of the quiz programs to see how it

was cons

tructed. Here, for example, is a listing of the procedure

COMICSTRIPQUIZ along with the three rrocedures that it uses -

Ql, Q2,

TO
1
2
3
L

42
45
50
55
58
60
62
65
70
75
8¢
85

END

TO
10

15
2
25

3
END

and Q3.

COMICSTRIPQUIZ
PRINT "

PRINT ""

PRINT M

PRINT "ARE YOU A FAITHFUL READER OF THE COMICS? DO YOU
CHUCKLE WHEN YOUR FAVORITE CHARACTER GETS INTO A FUNNY
SITUATION? DO YOU LIKE THE ADVENTURE COMICS? THE
DETECTIVE COMICS? THE TEENAGER COMICS? HERE ARE SOME
QUESTIONS TO SEE HOW LOYAL A COMIC STRIP READER YOU ARE?"
PRINT "

PRINT "M

PRINT Q1

PRINT "M

PRINT ""

PRINT Q2

PRINT "™

PRINT "

PRINT Q3

PRINT "

PRINT "

PRINT "NOW IT'S YOUR TURN TO WRITE SOME QUESTIONS ABOUT
YOUR FAVORITE COMIC STRIP CHARACTERS. ADD THEM TO THIS
QUIZ SO WE CAN TRY THE QUIZ OUT ON EACH OTHER."

Ql

PRINT "THE RED BARON WAS A GERMAN WORLD WAR I HERO. WHO
FIGHTS THE RED BARON IN THE COMIC STRIPS?"

REQUEST ''X"

IS /X/ "SNOOPY"

IF YES RETURN "RIGHT YOU ARE."

IF NO RETURN "IT'S SNOOPY WHO SAYS 'CURSE YOU, RED BARON'"

-168~

Report No. 1889

TO
10

Q2
PRINT "ROBIN IS THE BOY ASSOCIATE OF WHAT COMIC STRIP
CHARACTER?"

2@ REQUEST "y"

3¢ IS /Y/ '"BATMAN"

4 IF YES RETURN "HOLY COMPUTER! YOU'RE RIGHT."

5 IF NO PRINT '"HOLY SMOKES! IT'S BATMAN"

END

TO Q3

1§ PRINT "WHO WAS THE FAMOUS CARTOONIST AND PRODUCER WHO

20
3
LY
50
END

The students then made up their own questions and answers in the

form of
COMICSTR

TO
1¢
20
30
b g
50
END

CREATED SUCH CHARACTERS AS MICKEY MOUSE, DONALD DUCK,
AND PLUTO?"

REQUEST "WHO"
IS /WHO/ "WALT DISNE*"

IF YES RETURN "YOU'RE AN AUTHORITY ON CARTOONISTS, I SEE."
IF NO RETURN "THE GREAT WALT DISNEY IS THE NAME YOU WANT ., "

procedures. Here is a procedure made for use with
IPQUIZ.

Ql

PRINT "WHO IS HAWK'S PARTNER?"

REQUEST '"WHO"

IS /WHO/ "DOVE"

IF YES RETURN "GEE WILLIKERS, THATS RIGHT"

IF NO RETURN "DOVE IS THE NAME, JOKES ARE MY GAME"

Bolt Beranek and Newman Inc.

COMICSTRIPQUIZ was then edited to incorporate this new question
procedure, QU.

«ED
>9f
>95

IT COMICSTRIPQUIZ
PRINT '
PRINT "

>1f8 PRINT Q.
>END

COM
‘-

When COMICSTRIPQUIZ was run, the following exchange occurred

ICSTRIPQUIZ DEFINED

those shown in the previous run.

~169-

after

e

Report No. 1889 Bolt Beranek and Newman Inc. é

WHO IS HAWK'S PARTNER?
XROBIN
DOVE 1S THE NAME, JOKES ARE MY GAME

A1l the quiz programs shown use preprogrammed questions and
answers. In later phases, students wrote procedures for gener-
ating the questions and answers as these were needed in the
course of the quiz. This work was done in conjunction with a é
major project on equations, as part of the algebra course @
material. It is discussed later (in the section titled Algebra {

Teaching Sequence). l

H
Message Coding and Decoding Programs é

The work on message coding programs started with a procedure K
called SCRAMBLE, which rotates the letters of a word one position L
to the left (circularly - the leftmost letter becomes the right- “
most one). SCRAMBLE and its associated decoding procedure,

UNSCRAMBLE, were introduced with bugs. A copy of the students'

assignment to debug them follows.

The students discovered that the roles of SCRAMBLE and

UNSCRAMBLE could be reversed, i.e., that UNSCRAMBLE could be

used for coding a word and that SCRAMBLE would then function /
properly as the associated decoder. 1

Report No. 1889 Bolt Beranek and Newman Inc.

BUGS, BUGS, BUGS!!

Here are two procedures that don't quite work. Find the bugs.
The first procedure is called SCRAMBLE.

TO SCRAMBLE /WORD/

1¢ CALL
THING: FIRST OF /WORD/
NAME : "FRONT"
2 CALL
THING: BUTFIRST OF /WORD/
NAME : "BACK"
3¢ RETURN WORD OF /FRONT/ AND /BACK/
END

This procedure was supposed to scramble the word by putting the
first letter at the end of the word. Here is what happened.

<PRINT SCRAMBLE OF '"DOOR" I wanted this procedure to return
DOOR OORD

+PRINT SCRAMBLE OF "PRESS"

ERESS RESSP

Once the procedure SCRAMBLE worked, UNSCRAMBLE was supposed to
put the word back together again.

TO UNSCRAMBLE /MESS/

19 CALL
THING: LAST OF /MESS/
NAME : "FRONT"
2¢ CALL
THING: BUTLAST OF /MESS/
NAME : "BACK"
3¢ CALL
THING: WORD OF /FRONT/ AND /BACK/
NAME : "NEWWORD"

4¥ RETURN /MESS/
END UNSCRAMBLE

Here is what happened. I wanted this procedure to return

+<PRINT UNSCRAMBLE OF '"OORD"

OORD DOOR
+«PRINT UNSCRAMBLE OF "RESSP"
EESSP PRESS

Can you fix these two procedures?

=171-

Report No. 1889 Bolt Beranek and Newman Inc.

The main project of the series on '"secret codes", the Gibberish
project, was suggested by the students. They were all fluent
speakers of Gibberish (pronounced Jibberish). They provided the
rules for translating English words to simple Gibberish: 1if the
first letter is a consonant, insert the letters ITHAG after the
first letter; if the first letter is a vowel, prefix the entire
word with the letters ITHAG. (These are very similar to Pig
Latin rules.) Thus, DOG becomes DITHAGOG, and CAT becomes
CITHAGAT, but AT becomes ITHACGAT and I becomes ITHAGI. The goal
was to write procedures for translating English sentences to

Gibberish sentences and vice-versa.

The first task was to write a procedure, called GIB, for perform-
ing the first of the two translation rules. GIB has a single
input, the word /OLDWORD/. Its output is a word constructed

from three parts - the first letter of the input, the literal
"TTHAG", and the BUTFIRST of the input. |

<TO GIB /OLDWORD/

>1f CALL
THING: FIRST OF /OLDWORD/
NAME: 'ONE"
>2@ CALL
THING: "ITHAG"
NAME: "YTwo"
>3 CALL
THING: BUTFIRST OF /OLDWORD/
NAME: '"THREE"
>4 RETURN WORD OF /ONE/ AND WORD OF /TWO/ AND /THREE/
>END

GIB DEFINED

+<PRINT GIB OF "CAT"

B e |

CITHAGAT

«PRINT GIB OF "AT"
AITHAGT

«PRINT GIB OF "A"
AITHAG

<

Report No. 1889 Bolt Beranek and Newman Inc.
Note that GIB has the same effect on words beginning with vowels
as it has on words beginning with consonants.

The second task was to write a procedure, called IB, for perform-
ing the second of the two translation rules.

<TO IB /OLDWORD/

>1§ CALL
THING: "ITHAG"
NAME: "ONE"

>2@ CALL
THING: /OLDWORD/
NAME: "Two"

>3f RETURN WORD OF /ONE/ AND /TWO/

>END

IB DEFINED

<PRINT IB OF "A"

I THAGA

“<PRINT IB OF "AT"

I THAGAT

<PRINT IB OF '"CAT"

ITHAGCAT

«

Like GIB, IB works indifferently on all words.

The third task was to write a test procedure to decide which of
the two procedures (IB or GIB) is to be performed on a given

input: the test is whether or not the first letter of the input

is a vowel. The students wrote test procedures like the following.

<TO VOWEL /LETTER/

>18 IS /LETTER/ "A"

>2f IF YES RETURN "YEg"
>38 1S5 /LETTER/ "E"

>uff IF YES RETURN "YES"
>58 IS /LETTER/ "IM

>6f IF YES RETURN "YEg"
>78 1S /LETTER/ '"o"

>80 IF YES RETURN "YES"
>9f IS /LETTER/ "u¥
>1f% IF YES RETURN "YESM
>118 RETURN "NO"

>END

VOWEL DEFINED

‘-

-173-

AT R

A ST e T e T R

R ok

)

e R

g.

Report No. 1889 Bolt Beranek and Newman Inc.

Next, students wrote a procedure, called SUPERGIB, for translat-
ing any English word. They usually started with a faulty proce-
dure like this.

TO SUPERGIB /ANYWORD/

1§ IS FIRST OF /ANYWORD/ VOWEL
2@ IF YES RETURN IB OF /ANYWORD/
3¢ IF NO RETURN GIB OF /ANYWORD/
END

Line 1@ is better English than LOGO. VOWEL needs to have an
input. Also, its output must be one of the two words "YES" or
"NO", not a letter. Line 1@ is correctly rewritten as follows:

1§ IS VOWEL OF FIRST OF /ANYWORD/ "YES"

Now SUPERGIB works,

<PRINT SUPERGIB OF '"'JIM"
JITHAGIM
+PRINT SUPERGIB OF "AMY"
I THAGAMY

“~

The students could translate two-word sentences in the following

way .

«PRINT SENTENCE OF SUPERGIB OF '"JIM" AND SUPERGIB OF "AMY"
JITHAGIM ITHAGAMY
“~

They were shown a general procedure for translating sentences of

arbitrary length into Gibberish.

«TO GIBBERISH /SENT/

>1¢ 1S /SENT/ /EMPTY/

>2@ IF YES RETURN /EMPTY/

>3@ CALL
THING: SUPERGIB OF FIRST OF /SENT/
NAME: "GIBWORD"

>4 RETURN SENTENCE OF /GIBWORD/ AND GIBBERISH OF BUTFIRST

OF /SENT/

SEND

GIBBERISH DEFINED

“~

-174=

ke
4
4
E
i

b i s AR TS il e R

Report No. 1889 Bolt Beranek and Newman Inc.

+«PRINT GIBBERISH OF "THIS DOES IT"
TITHAGHIS DITHAGOES ITHAGIT

“

This procedure would have been too difficult for the students to
write at thils stage of their development. Some of them, however,
after seeing the procedure GIBBERISH could have written an
UNGIBBERISH for turning a Gibberish sentence into an English

sentence.

The students' last assignment for this project was a slightly

easier one - to write a procedure UNGIB for undoing SUPERGIB,

i,e., for turning a Gibberish word into an English word. Here
is the UNGIB procedure of one of the students.

TO UNGIB /M/
8 IS FIRST OF /M/ "IV
9 IF YES RETURN BUTFIRST BUTFIRST BUTFIRST BUTFIRST BUTFIRST
OF /M/
1§ CALL
THING: FIRST OF /M/
NAME: "FRONT"
2¢ CALL
THING: BUTFIRST BUTFIRST BUTFIRST BUTFIRST BUTFIRST
BUTFIRST OF /M/
NAME: "BACK"
39 CALL
THING: WORD OF /FRONT/ AND /BACK/
NAME: '""NEWWORD"
4P RETURN /NEWWORD/

END

«P UNGIB "GITHAGOOD"
GOOD

«~P UNGIB "GITHAGIRL"
GIRL

«P UNGIB "YITHAGOU"
YOU

«P UNGIB "DITHAGID"
DID

«<P UNGIB "ITHAGIT"

IT

-

-175-

TR TN TS T

Report No. 1889 Bolt Beranek and Newman Inc.

In this procedure line 8 tests whether the input begins with "I".
If it does (this corresponds to English words beginning with a
vowel), the input is necessarily prefixed by "ITHAG" and the
output is obtained (on line 9) by striking off those five

letters from the input. In the other case, the output is the
word made by joining the first letter of the input with what
remains of the input after the first six letters are removed
(letters 2 through 6 must be I,T,H,A,G). Note that the sequence
of test runs at the end spell out the words GOOD GIRL YOU DID IT

(a hidden message). She obviously felt that she had done a hard
Job well,

The project following Gibberish was Pig Latin. The procedures
for translating English into Pig Latin are very similar to those
for Gibberish. With Pig Latin, however, the students were intro-
duced to a different VOWEL procedure which uses the following
more general procedure for finding whether or not a letter is
contained in a word. (It outputs "YES" or "NO" accordingly.)

TO CONTAINS /LETTER/ AND /WORD/
1§ 1S /WORD/ /EMPTY/

2f 1IF YES RETURN '"NO"

3¢ 1S /LETTER/ FIRST OF /WORD/
Ly IF YES RETURN "YES"

5¢ IF NO RETURN CONTAINS OF /LETTER/ AND BUTFIRST OF /WORD/
END

The procedure works as follows. It tests (in line 3@) to see if
the letter it is checking for is the same as the first letter of
the word in question. If it is, the procedure outputs "YES"
(1ine 4g). If it is not, the procedure is repeated, this ftime
(line 5@) testing the letter against the butfirst of the word
(i.e., the word obtained by removing the first letter of the

current word). If the word becomes empty (i.e., no more letters),

Report No. 1889

Bolt Beranek and Newman Inc.

the procedure outputs "NO". VOWEL can now be written as a

special case of CONTAINS in which the word being searched is the
word of all vowel letters, "AEIOU".

TO VOWEL /LETTER/

1§ RETURN CONTAINS OF /LETTER/ AND "AEIoOU"
END

The value of having this more general procedure, CONTAINS, was

shown by the ease with which some other test procedures could be

written with it. Thus, the procedure EVEN, which tests whether

or not a number is even.

TO EVEN /NUMBER/

1§ RETURN CONTAINS OF LAST OF /NUMBER/ AND "ga2L68"
END

Extensions of the use of CONTAINS for selecting specified
(sometimes randomly specified) letters from words or words from

sentences were made in subsequent projects on generating sentences
and algebraic equations.

4.3 Algebra Materials

In the second part of the course, which covered a period of about
slx months, the objective was to use LOGO in the teaching of
mathematics, including specific content in arithmetic and algebra,

The effort was focused on exploratory development of an elaborated,

coherent curriculunm.

Samples of the teaching materials used in four sequences, includ-
ing associated student work, are presented next.

e

e e

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences and Oscillators

The second par®t of the course started with a unit on the genera-
tion of number sequences. The material was chosen and organized
to show the basic structure of simple iterative processes. An
iteration is built up out of four separable functional parts -

a CHECK to determine whether or not the iteration is complete,
an ACTION to be carried out each time the iteration is performed
(i.e., at each round), the PREPARATION of inputs for the next
round of the iteration, and the RECURSION, which calls for the
execution of the next round.

The unit comprised four assignments. The first one studies a
procedure called GODOWN to generate integers in descending
sequence from any starting number to 1. The second one treats

a related procedure called GOUP to generaﬁé integers in ascending
sequence between two prescribed numbers. The student is given
the skeleton of the GOUP procedure and he is supposed to complete
it. The third assignment concerns a modified GODOWN procedure;
this one completely analogous to GOUP. The student is given a
modified GODOWN which has bugs. He is to debug it. The last
assignment is for the student to write a procedure UPANDDOWN
which is the grand summing-up of the preceding ones.

-178-

e i

Report No. 1889 © Bolt Beranek and Newman Inc.

Sequences - Assignment 1

TO GODOWN /NUMBER/

19 IS /NUMBER/ GREATER OF /NUMBER/ AND 1 (CHECK)

20 IF NO RETURN

3¢ PRINT /NUMBER/ (ACTION)

4g CALL (PREPARATION)

THING: DIFFERENCE OF /NUMBER/ AND 1
NAME: "NEWNUMBER"

5¢ RETURN GODOWN OF /NEWNUMBER/ (STARTS NEW
ROUND)

Line [¢7 checks whether GODOWN is done.

It checks whether/gyaz' is greater than or equal to /

GODOWN is done when /py p)Hefe / is less than _/
: 7 e

If line 3@ became line 4@ and line 4@ became line 34:
34 CALL (PREPARATION)

THING: DIFFERENCE OF /NUMBER/ AND 1
NAME: "NEWNUMBER"
4g PRINT /NUMBER/ (ACTION)

Would GODOWN act differently? N

~179=-

Report No. 1889 Bolt Beranek and Newman Inc.

To answer the next question you have to play computer with GODOWN.

What happens if the action line (now Line 4g) is
4 PRINT /NEWNUMBER/ (ACTION)

GODOWN now looks 1like
TO GODOWN /NUMBER/

19 IS /NUMBER/ GREATER OF /NUMBER/ AND 1 (CHECK)
2@ IF NO RETURN
38 CALL (PREPARATION)

THING: DIFFERENCE OF /NUMBER/ AND 1
NAME: '"NEWNUMBER"

4Up PRINT /NEWNUMBER/ (ACTION)
5¢ RETURN GODOWN OF /NEWNUMBER/ (STARTS NEW
ROUND)

PLAY COMPUTER
GODOWN OF 3

) . B . f .
oy oF :
- el N
; (x Do // o 56

A A %/A/' (, %

JNMDER/ 15 oo ma R/ 15 AL SwemiR/ s 2 Shem ek 1S o
321 2z 2 1z¢ £t 2
/ NEWNUM AER / 1s & | Wewn MER/ 15 Z //Va’it,'ﬂb’/ﬁ/lzc'/i’/m ¢ RETIERN /t:’/’?/’/' 7'/
PRINT 2 / PRINT L PRINT @

_

Try GODOWN with the following inputs

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences - Assignment 2

GOUP is to print its first input until it is greater than its
second input. Before each round a new first input must be
prepared by adding 1 to the present first input.

Fill in the blanks.

TO GOUP /ACTIONNUMBER/ AND /TOPNUMBER/
1¢ IS /TOPNUMBER/ GREATER OF /ACTIONNUMBER/ AND /ryPn¢mpER/(CHECK)
2@ IF NO RETURN
34 CALL (PREPARATION)
THING: S¢/n] OF /ACTIONNUMBER/ AND 1
NAME: "NEWNUMBER"

4@ PRINT /ACTIONNUMBER/ (ACTION)
5¢ RETURN GOUP OF /NEWNUMBER/ AND /rzppno Mz R/ (STARTS NEW
’ ROUND)

Line /£ 1is the check line.

It checks whether/}'pe/\/gmﬁfgé is greater than or equal to
[ACTIO NN BE R/

When [7T2PANvM BER/ is less than /gcryiep e ri BER/
GOUP vreturns /EMPTY/.

Line 3¢ is the Ac<7 oM line. It _ADDS 1 to

/ACTICNNUMBER/ .

To check your answers to the questions above, PLAY COMPUTER
with GOUP.
«GOUP OF 2 AND 4

4 WD

-181-~

ot tonitispapy pus

Report No. 1889 Bolt Beranek and Newman Inc.

JACTIONNUMBER] i & | JACTIonNUMBER//S 3 [ACTISNAVIBER) IS 4 | JACTioNNupmBER] 15 & F.

/,(..ap/va/VJaEﬁ/ 1s ¥ JTOPAYMBER/ 15 4 /'mp,vumgm/ 15 ¢) TOPNUMBER /’ /S 4 '

4z 4z 3 Y= y 4 E &

INEWNVMBER] 15 3 INERNMBER) 75 4- ‘ INEWNMBER) 15 5 FET VRN /E/'?PT)/)

PRINT 2 PRINT 3 PRINT 4
\/f

Now - at the terminal - get the incomplete procedure GOUP. ;

Edit it by retyping the lines which you filled in above. 4
Then try 1it.

-182-

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences - Assignment 3

GOUP 1s a procedure which requires two inputs - a starting number
and a stopping number.
Change GODOWN so that 1t requires two inputs - a starting number
and a stopping number.

<GODOWN 5 AND 2

A POWwW U

<LIST GODOWN
TO GODOWN /NUMBER/

19 IS /NUMBER/ GREATER OF /NUMBER/ AND 1 (CHECK)
2¢ IF NO RETURN
38 CALL (PREPARATION)

THING: DIFFERENCE OF /NUMBER/ AND 1
NAME: "NEWNUMBER"

4g PRINT /NUMBER/ (ACTION)
5¢ RETURN GODOWN OF /NEWNUMBER/ (STARTS NEW
ROUND)

How many inputs will the new GODOWN require? 2=
Which lines in GODOWN need to be changed? /¢’ GJ T T L
£, 2§

The JHE K line and 1ine ")'[which starts the next
round need to be changed. r

Fill in:

TITLE TO GODOWN /NUMBER/ AND / %7, /M Nt i 22/ /

5¢ RETURN GODOWN OF /NEWNUMBER/ AND /4, 777N k] BE)R /

Now that these changes have been made will GODOWN do the right
thing? ~N©

To answer this question play computer.

-183-

o T T S —— e s

Fr_,” arem iz

Report No.

1889

«GODOWN OF 4 AND 2

0% 1

¥ 1

o ¢ of of :

N N © N ot]

p0" Y o° »]

G’D (’50 (7,0 % P % lh
/'/n'mum/ is 4 NP BER Jis 3| MWemBER/ /s L //vu/wae‘,e/ /31

[BorroMNUNBER/ 15 4
41

JorromusnpeR/ 15 2
32

Bolt Beranek and Newman Inc.

/wrromvuma:ﬁ’/ 15 L
e

| BATTOMNYMBERS 15 2

Z=1

gt s RRSUSSt
5

PRINT #

PRINT 3

PiRINT U PrRINT 2

YES
0,
When should GODOWN be done? wﬁﬁ‘NZ/vﬂvaf/e/ 1S LESS THAN /lb’K'TLé'/V/VL-'/ﬂEL:?f/ |
GODOWN is done when /NUMBER/ is no longer greater than or equal

to ﬁ/ﬁc‘rr(:/t'//vumBER/ "
GODOWN must be edited again. ’

Line /é must be changed.
The second input to GODOWN must

instead of / .
Now EDIT GODOWN at the terminal.

There is a bug. What is wrong?

Is GODOWN performing the right action?

Is the check line correct?

be used in the check line

Try it with the following pairs of
5 AND 2
3 AND 1

1241 AND 97

inputs.

-184-

Report No. 1889 Bolt Beranek and Newman Inc.

Sequences - Assignment 4

Write a procedure UPANDDOWN which will swing down and up between

AT R KRR SR —

its two inputs.

NAME OF PROCEDURE: TO UPANDDOWN /BOTTOM/ /TOP/
EXAMPLE OF USE:

UPANDDOWN 2 AND 5

eeipiinia SR

Ui

Ul LW W Ul EW oW Y

UPANDDOWN will continue until we depress the BREAK key. How can
we modify the procedure so UPANDDOWN stops after a specified number

of complete swings?

The concepts introduced in the unit on sequences were consolidated
and extended in the following unit. The material is part of a
larger sequence on oscillators planned for subsequent teaching.

It begins with procedures for generating simple oscilllatory
patterns. The procedure SAW is a natural continuation of number

sequencing procedures like UPANDDOWN.

e e tys et e I RS,

R

T AR R T s TR A T R A TERERE ety RV RS R T R TR e e A e 2 n o m e T mamEER g m e T e o s e e

)
Report No. 1889 Bolt Beranek and Newman Inc.

Our next unit is about procedures which draw designs. The
first pattern-making procedure we shall study is called SAW.

NAME OF PROCEDURE: TO SAW /COUNTER/ AND /LIMIT/
INPUTS: /COUNTER/ - any numeral

/LIMIT/ = maximum word size
EXAMPLE:

«<SAW OF 1 AND 3
X

X
XXX
X

X
XXX
X

X
XXX
X

X
XXX
X

+<3AW OF 4 AND 6
X
X
XXXXXX
X
X
X
X
X
XXXXXX
X
X
X
X
X
XXXXXX
X

B e S v sy

Report No. 1889 Bolt Beranek and Newman Inc.

The pattern is like a saw's teeth. Two kinds of words make up
the pattern. One kind is a "solid" word like:

XXXXXXXX
the other is a single letter preceded by blanks (a margin)
X

SAW needs separate procedures to make each kind of word.

EXAMPLES: NAME OF PROCEDURE:

PRINT REPEAT OF "X" AND 6 TO REPEAT /WORD/ AND /LENGTH/

XXXXXX

PRINT REPEAT OF "A" AND 14

AAAAAAAAAA

PRINT PLOT OF "X" AND 6 TO PLOT /WORD/ AND /LENGTH/
X

PRINT PLOT OF "A" AND 14
A

SAW relies on its own CHOOSE procedure to decide when to use
PLOT and when to use REPEAT,

NAME OF PROCEDURE: TO CHOOSE /NUMBER/ AND /LIMIT/

We find out how CHOOSE makes its decision by looking at SAW's
output. This time we number the lines.

SAW OF 1 AND 4

\O O~ U1 =W o -
o

Lines 4 and 8 use REPEAT. The other lines use PLOT. If we think
of /COUNTER/ as the line number, we can see that when /COUNTER/ is
4 or 8 it is divisible by /LIMIT/ which is 4. Whenever /COUNTER/

Report No. 1889 Bolt Beranek and Newman Inc.

divided by /LIMIT/ has a remainder of @, CHOOSE uses REPEAT.
Ctherwise, CHOOSE gives PLOT the remainder as its word length.

The other procedure needed to make up this design is

NAME OF FROCEDURE: TO REM /NUMBER/ AND /DIVISOR/

This procedure finds the remainder of /NUMBER/ divided by /DIVISOR/.

List of procedures

TO SAW /COUNTER/ AND /LIMIT/

TG CHOOSE /COUNTER/ AND /LIMIT/
TO REM /NUMBER/ AND /DIVISOR/
TO PLOT /WORD/ AND /LENGTH/

TO REPEAT /WORD/ AND /LENGTH/

FLOW CHART FOR SAW

FIND THE REMAINDER
OF /COUNTER/
DIVIDED BY /LIMIT/

)

125 { 1s /rEmaTOER/ 0) NO

. /

W W
PRINT REPEAT OF PRINT PLOT OF "X"
nX" AND /LIMIT/ | AND /REMAINDER/
4 N
ADD 1 TO /COUNTER/
TO BUILD
/NEWCOUNTER/

-188-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT REPEAT

NAME OF PROCEDURE: TO REPEAT /WORD/ AND /LIMIT/
INPUTS: /WORD/ - any word or letter - must not be empty
JLIMIT/ - length of the new word - must be a number.
New word must be longer than /WORD/.
EXAMPLES:

<PRINT REPEAT OF "X" AND z

XX

«PRINT REPEAT OF "APE" AND 6
AAAAPE

+<PRINT REPEAT OF "X" AND 15
AXXXXXXXXXXXXXX

+<LIST REPEAT

TO REPEAT /WORD/ AND /LIMIT/

18 CALL
THING: COUNT OF /WORD/
NAME: HruisT”

20 1S /TEST/ JL 100 T/

3¢ IF Y. ‘5 RETURN /g 'cp/

47 CALL ’
THING: FIRST OF /WORD/
NAME: "LETTER"

5¢ CALL
THING: Jy o v D OF /LETTER/ AND /WORD/
NAME: "NEWWORD"

ISy — baps e S

Nl

60 WLTURN ~NEVEAL SF WEwn e Ry 4nd Aimi T/
END

<

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT PLOT

NAME OF PROCEDURE: TO PLOT /WORD/ AND /LIMIT/
INPUTS: /WORD/ - any word or letter
/LIMIT/ - length of the new word, including blanks.

EXAMPLES:
<PRINT PLOT OF "X" AND 9
X
<PRINT PLOT OF "WHO" AND Y
WHO
<PRINT PLOT OF "M" AND 1
M
<PRINT PLOT OF "M" AND 3
M
-~
REMINDER:
/BLANK/ is the blank letter.
«<CALL

THING: WORD OF /BLANK/ AND "Y"
NAME: "SAMPLE"

«PRINT /SAMPLE/

Y

<+

«LIST PLOT

TO PLOT /WORD/ AND /LIMIT/

1¢ IS /LIMIT/ COUNT OF __ /ig/s 8D /

20 IF y£ S RETURN /woR D/

3¢ CALL 7
THING: WORD OF /BLANK/ AND /w/orRD/
NAME: "NEWWORD"

AE PETURN PLLT_oF /NEWWORD/ AND [i/MIT/

END
<+

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT REM

NAME OF PROCEDURE: TO REM /NUMBER/ AND /DIVISOR/

INPUTS: /NUMBER/ - any positive integer
/DIVISOR/ - any positive integer except #.
OUTPUT: Remainder of /NUMBER/ divided by /DIVISOR/

EXAMPLES :

+«PRINT REM OF 6 AND 3

2
«PRINT REM OF 3 AND 6

3

«PRINT REM OF 15 AND 2

1

+<LIST REM

TO REM /NUMBER/ AND /DIVISOR/

18 IS /At flypsin'/ GREATER OF /NUMBER/ AND /DIVISOR/

2@ IF NO RETURN /s itse-/3/

3¢ CALL
THING: DIFFERENCE OF /NUMBER/ AND / j;;y 5 ¢ R/

L4

NAME: "NEWNUMBER"

44 RETURN REM OF /[VQ]LVVLJHAQJ;AL/AUVQ ¥h7,L,,«>L/RQ{

END

e

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT CHOOSE AND SAW

NAME OF PROCEDURE: TO CHOOSE /COUNTER/ AND /LIMIT/
INPUTS: /COUNTER/ - any integer
/LIMIT/ - maximum word size - integer

EXAMPLES:

«PRINT CHOOSE OF 8 AND 4

XXXX

<PRINT CHOOSE OF 8 AND 5
X

+<LIST CHOOSE
TO CHOOSE /COUNTER/ AND /LIMIT/
14 CALL
THING: REM OF /COUNTER/ AND /LIMIT/

NAME: “"ReEmMAINDE R

20 IS /REMAINDER/ _ "' g«

3¢ IF YES RETURN J9E PEAT OF "X" AND /i1 T/
Ug IF NO RETURN ~Pi o7 OF "X" AND /REMAINDER/

END

«LIST SAW

TO SAW /COUNTER/ AND /LIMIT/
1@ PRINT CHOOSE OF /COUNTER/ AND /LIMIT/

20 CALL _
THING: SUM OF /Co/WV TEL/KR/ AND "1"
NAME: "NEWCOUNTER" 7

30 RETURN S A/ QI /NEW COUNTER/ AND /11M) r/

“

-~192-

Report No. 1889 Bolt Beranek and Newman Inc.

Guessing and Strategy

The next units introduced the students to search procedures and
planning in the context of some simple mathematical games. The
first of these games is, simply, to guess a number. After work-
ing with a procedure for blind guessing, the students were
assigned work on a sequence of programs for guessing by binary
partitioning (the binary search algorithm).

The games often make use of a special LOGO operation, /RANDOM/,
which produces a digit at random whenever it is called. Thus,

<PRINT /RANDOM/

7

<PRINT /RANDOM/

4

<PRINT /RANDOM/

8

<PRINT WORD OF /RANDOM/ AND /RANDOM/
27

The assignment on blind guessing follows.

-193~-

g yrp——e T

R p—

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT RANDOMGUESS

Compiete RANDOMGUESS and its associated procedure GUESS. Then
use it to play several games. -Record the number of guesses

required before the computer guesses your number in each game.

TO RANDOMGUESS

18 PRINT "THINK OF A NUMBER BETWEEN ¢ AND 99. I'LL TRY TO
GUESS IT."

20 GUESS

END

TO GUESS
19 CALL
THING: WORD OF /RANDOM/ AND /RANDOM/
NAME: '"GUESS"
2¢ PRINT SENTENCE OF "MY GUESS IS" AND /GUVE S S/
3¢ PRINT "AM I RIGHT? TYPE YES OR NO."
4p REQUEST "ANSWER"
58 IS /AN S/ E R/ "YES"
64 IF NO PRINT "I'LL TRY AGAIN."
78 IF NO G LU &S S
8¢ IF YES PRINT "LET'S PLAY ANOTHER GAME"
98 IF YES RN Dopl GUES S
END

=194~

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT NUMBERGUESS

e

RANDOMGUESS usually requires many trials before“it guesses your
number. We are going to develop a procedure NUMGUESS that will
guess numbers a lot faster (i.e., with fewer guesses) than
RANDOMGUESS (most of the time, not always - RANDOMGUESS 1s some-
times lucky).

The procedure NUMGUESS states the rules of the game to a beginning

player and then calls the procedure NUMGAME. (Note that a player

must say whether his number is HI or LO or OK =~ not just right ovr

wrong as in RANDOMGUESS.) NUMGAME asks the player for some range

of numbers that contains the number it is supposed to guess.

(This interval need not be @ to 99 as in RANDOMGUESS.) It then g
calls the procedure TRY (which does the real work). When TRY ié
completes its job, by guessing the number, NUMGAME gives the

player a chance to play another game.

TO NUMGUESS |

1¢ PRINT "HI, DO YOU KNOW HOW TO PLAY THIS NUMBER GUESSING GAME?" |

2% REQUEST "ANS"

3g IS /ANS/ "YES"

4g IF NO PRINT "YOU THINK OF A NUMBER, WHICH I WILL TRY TO GUESS.]
YOU HAVE TO GIVE ME SOME CLUES. I NEED TO KNOW THE HIGHEST AS ﬂé
WELL AS THE LOWEST POSSIBLE NUMBERS WHICH YOU MIGHT CHOOSE." |

5¢ IF NO PRINT /SKIP/ (/SKIP/ denotes a carriage return)

6¢ IF NO PRINT "AFTER I MAKE A GUESS, YOU MUST TELL ME IF THE
GUESS IS HI, 1O, OR OK (CORRECT)."

7¢ IF NO PRINT /SKIP/ i

8¢ RETURN NUMGAME i

END

Report No. 1889 Bolt Beranek and Newman Inc.

TO NUMGAME

12 TYPE "THE HIGHEST NUMBER IS "

2@ REQUEST "TOP"

3¢ TYPE "THE LOWEST NUMBER IS "

4Lp REQUEST "BOTTOM"

58 TRY SENTENCE OF /TOP/ AND /BOTTOM/
6@ PRINT /SKIP/

78 PRINT "DO YOU WANT TO PLAY AGAIN?"
8@ REQUEST "ANS"

9@ IS /ANS/ "YES"

198 IF YES RETURN NUMGAME

114 PRINT "GOODBYE"

END

Note that the procedure TRY has a single input - the sentence
formed from the two numbers /TOP/ and /BOTTOM/ that specify the
interval over which TRY i1s to guess. This interval i1s denoted
/GAP/.

TO TRY /GAP/
10 CALL
THING: MIDDLE OF /GAP/
NAME: "GUESS"
2¢ PRINT SENTENCE OF "MY GUESS IS" AND /GUESS/
3 PRINT "AM I HI, LO, OR OK?"
4 REQUEST "ANSWER"
58 IS /ANSWER/ "HI"
69 IF YES RETURN TRY OF DOWN OF /GAP/ AND /GUESS/
78 IS /ANSWER/ "LO"
8¢ IF YES RETURN TRY OF UP OF /GAP/ AND /GUESS/
9% IS /ANSWER/ "OK"
198 IF YES PRINT "I GUESSED IT/"
11¢ IF YES RETURN

128 RETURN TRY OF /GAF/ (TRY is repeated if the answer is
END none of "HI", "LO", or "OK")

~196-

Report No. 1889 Bolt Beranek and Newman Inc.

So TRY doesn't do all the real work either. It partitions its
job among three other procedures - MIDDLE, DOWN, and UP. MIDDLE
is used to compute a better guess, /GUESS/. If this guess 1is
high, DOWN uses it to compute a tighter /GAP/ for TRY by
decreasing the upper bound of the guessing interval; if this
guess is low, UP uses it to compute a tighter /GAP/ for TRY by
increasing the lower bound of the guessing interval.

MIDDLE is the key procedure in the program - it expresses the
main idea of the binary search algorithm.

-197-~

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT MIDDLE

NAME OF PROCEDURE: TO MIDDLE /GAP/

INPUT: /GAP/ - a sentence of two integers. (The first integer
is the upper bound of the search interval; the
second integer is the lower bound.)

OUTPUT: The improved guess, the integer nearest to the mid-

point of the search interval.

(MIDDLE uses a procedure which divides a number by 2.
The answer is a two-word sentence: first the quotient,
then the remainder. This procedure is discussed in the
section on Arithmetic Procedures.)

EXAMPLES:

«PRINT MIDDLE OF '"99 1"
50

«PRINT MIDDLE OF "19g 75"
87

+PRINT MIDDLE OF "25 1"
13

«PRINT MIDDLE OF "11 18"
10

TO MIDDLE /GAP/
14 CALL

THING: SUM OF FIRST oF/GAP/ MND LAST 0F [¢AF/

NAME: "FIELD"
2§ RETURN ,/~/RSj OF DIV2 OF /F/ELD/
END

-198-

i
‘} C
7 [
Y B
i 7

oh 4/]
Report No. 18§9 'é%, / Bolt Beranek and Newman Inc.
i i .f!;" SAN

ASSIGNMENT UP and DOWN

NAME OF PROCEDURE: TO UP /GAP/ AND /GUESS/

INPUTS: /GAP/ - a two-word sentence
/GUESS/ - a word

OUTPUT: A two-word sentence (the reduced /GAP/) with /GUESS/ +1
as the improved lower bound.

EXAMPLES:

<PRINT UP OF "1@@ - AND "5g"
188 51

«<PRINT UP OF "76 3" AND "1g"
76 11

-

TO UP /GAP/ AND /GUESS/

19 RETURN SENTENCE OF FIAST OF /GAP/ AND SUM OF /GUESS/
AND 1

END

NAME OF PROCEDURE: TO DOWN /GAP/ AND /GUESS/

INPUTS: /GAP/ and /GUESS/ as in UP

OUTPUT: A two-word sentence (the reduced /GAP/) with /GUESS/ -1
as the improved upper bound.

EXAMPLES:

ZPRINT DOWN OF "1@@ 2" AND "58"
9 2

«<PRINT DOWN OF "76 3" AND "1g"

9 3

-

TO DOWN /GAP/ AND /GUESS/

1¢ RETURN sENTE N¢ £ OF DIFFERENCE OF /GUESS/ AND 1
AND LHST OF /GAP/

END

~19Q~

BRI —p it s

gy s

/

' f B
N Ukl b

Ai./A {I/ H
'] i !
B " 'I! IJ ,jl Il,A ; ‘ g
1889 -, / B¢iﬁ Beranek and Newme

; RE . L !
; ,

i

‘o . N 2
SE . : i
s

B
N

.0
i

fi
.1."" 4

I3
]

- A%/fhe goallbf ﬁﬁis unit is to write a program for playing the
/ of NIM. ,The;two players are the computer itself and a pers

(%%med‘"YOU"). NIM is a somewhat more complex mathematical
than number guessing but it has simple rules of play. The

players start with a common pile of chips. Taking turns, e
player removes 1, 2, or 3 chips from the pile. The player

removes the last chip loses.

I. Plan of NIMPLAY

NIMPLAY requires two inputs - the number of chips currently
the game and the name of the next player.

NIMPLAY checks whether the game is completed. If it is not
calls upon the next player to make his move.

TO NIMPLAY /CHIPS/ AND /PLAYER/

INPUTS: /CHIPS/ /PLAYER/
Number of Player: "COMP"
Chips or "you"

CHECK: IS GAME OVER?

ACTION: 1If it is, announce winner and done.
If it is not, /PLAYER/ moves.

PREPARATION /NEWCHIPS/ /NEXTPLAYER/
ggsNg?XT New number Next player:
) of chilps "you" or "COMP"

~200-

il '
/i’ ,.{/ / ; :
L / . ..'

b

¥ ,
n Irfc.

bE K . :
ve 1 B) ’ / ¢
! . A * .
P

game
on

game
two
ach
who

in

, it

T; Report No. 1889 ' Bolt Beranek and Newman Inc.

: II. DETALLED ‘SUBPLANS
i

A, gHECK

& /
¥ :
*How Qp we check?

i

If /CHIPS/ is 1, the game is over. /PLAYER/ is the loser because
he must take the last chip. In LOGO, we'll say

IS /CHIPS/ /
IF YES PRINT SENTENCE OF /PLAYER/ AND "LOST!!M

If /CHIPS/ is 2, we also know the game is over. This time the
previous player loses and /PLAYER/ wins. In LOGO, we write

- IS /CHIPS/ __ &
IF YES PRINT SENTENCE cF [PLAYER[AND “WiNs !

B., PREPARATION

1. SUBPLAN FOR SETTING UP /NEWPLAYER/

This is easy. If /PLAYER/ is "YOU", /NEXTPLAYER/ is "comp".
If /PLAYER/ is "COMP", /NEXTPLAYER/ is "YOU". 1In LOGO, we say

IS /PLAYER/ "YOU"
IF YES CALL
THING: “cemp
NAME: “NeExT PLAYER”

IR NO CALL
THING: Yo"
s NAME: ‘“WEXT PLAYER"

-201-

Report No. 1889 Bolt Beranek and Newman Inc.

2. SUBPLAN FOR SETTING UP /NEWCHIPS/

Since this problem is a little harder, we divide it .o two
SUBSUBPLANS. We will write two different procedures il iol:
TO YOURPLAY /CHIPS/ and TO COMPLAY /CHIPS/.

Each procedure will change the number of chips. YOURVILY can
be pretty dumb. It has only to REQUEST a move. COMPIAY aust
be pretty smart. It has to figure out the best move.

ASSIGNMENT YOURPLAY
This procedure has the job of asking the human player (called
"YOU") to choose 1, 2, or 3 and to return the number of chips

left in the game.

We call the number of chips "CHIPS" and the number chosen by
the player "MOVE",

Now look at the skeleton procedure on the next page. "The real
work is done by lines 28 and 94!

First make sure you understand these two lines. All the reot
is to make sure YOU does not give a funny answer.

-202-

Report No. 1889 Bolt Beranek and Newman Inc.

1. Fill in the following skeleton p}ocedure.
TO YOURPLAY /CHIPS/ /

1@ PRINT "YOU MAY TAKE 1, 2, OR 3."

2¢ REQUEST "MOVE" ‘

38 1S [meye/ 1

4g IF NO IS jmevE[2

58 IF NO IS /movE/ __ 3 .

6¢ IF NO RETURN YOURPLAY OF /c/-//Ps/

78 IS /CHIPS/ GREATER OF /rﬂ/PzJ AND /movE/
8¢ IF NO RETURN YOURPLAY OF /CHIPS/

9g¢ RETURN DIFFERENCE OF ;/z;ﬁ/;?:;, AND /PIpyE
END

. 2., Fill in the blanks in the following dlalogs. Write what you
think your procedure should do.

+«PRINT YOURPLAY OF 7
YOU MAY TAKE 1, 2, OR 3.
*3

+PRINT YOURPLAY OF 4

YOU MAY TAKE 1, 2, OR 3.
%Y

Yo MAY TAXE 1, 2, OR 3.
*0

L

-203~-

Report No. 1889 Bolt Beranek and Newman Inc.

+<PRINT YOURPLAY OF 8
YOU MAY TAKE 1, 2, OR 3.
%]

7

—————

<PRINT YOURPLAY OF 2

YOU MAY TAKE 1, 2, OR 3.
*3

Yoy MAY TAXE 1, 2, OR 3.

¥/
/

3. Try your procedure at the terminal in the next class. Bring
your copy of this sheet. Test whether your procedure does what
you expected.

How should the computer decide its moves? Before we can write
COMPLAY, we should devise a way to figure out best moves. Let's
first consider easy cases with small numbers of chips.

If there is only one chip left, the computer loses. If there are
2 chips, the computer can take one thereby leaving one so it wins.
Similarly, it wins for 3 or 4 chips by taking 2 or 3 and again
leaving one. So 1 means lost, 2 means take 1, 3 means take 2,

4 means take 3. Now what about 5? If the computer takes 1, 2,

or 3, the other player is left with 4, 3, or 2 and so can win if
he plays correctly. So if the computer has 5 chips, it doesn't
matter what it plays, it has to rely on a mistake by the other
player in order to win. Five, like 1, is a bad number of chips

to get.

-204-

A ruiToxt provided by eric [ERNN [P -
- ; e bl Py TR DSy S e it — N

S R TR TR ORI APV YT+ T2 BTN YSEMIRCS

1 1,._,—»——;:.‘ oSttty R

S bt e S et s et

N T g e

_— (G ST el e 137 S uicsrs
e S L) 2 s sara o [P ey 2 et pe i G R AR v 10 L O R R A
B R e R o v e 2t s 2 3 %

Report No. 1889 Bolt Beranek and Newman Inc.

Now, while 5 is bad for the computer, it is even worse for the
opponent because the computer isn't going to make any mistakes
in playing. So, if it gets 6, 7, or 8 chips, it will take 1, 2
or 3 leaving 5 and the opponent will lose. Thus, 6, 7, or 8
chips win for the computer.

]

If there are 9 chips left, no matter what the computer does, its
opponent will be left in a favorable pcsition (with either 6, 7,

or 8 chips, all good numbers). So, 9 is bad. In the table we
see -

1 lost 5 lost 9 lost

2 take 1 6 take 1 10 take 1
3 take 7 take 2 .

Y take 8 take 3 :

Of course, 5 and 9 are losing positions only if the opponent

doesn't make a mistake. Hence, the computer won't give up even
in those cases.

Notice the pattern in the table. For example, 4, 8, 12, —-- all
say take 3; 3, 7, 11, -=- all say take 2; etc. Thus, to decide
how many chips to take, the computer only needs to find out which

of the four number sequences-inecludes.-the current number of chips, .= 1

We can now write a procedure that employs a strategy based on
that observation.

-205-

Report No. 1889 Bolt Beranek and Newman Inc.

TO COMPLAY /CHIPS/

Here is a strategy for playing NIM.

First divide the number of chips by U4 and find the remainder.

For example,

REM OF 5 is 1

REM OF 27 is 3
REM OF 380 is 24
REM OF 83 is 27

REM OF 3 is g

The rule for choosing a move is:

Remainder Move
g 2
1 éiﬁggu4pfhwaﬂzb-
& A
3 L
Apply this rule in the following cases:
/CHIPS/ REM OF /CHIPS/ /MOVE/
19 2 1
13 v 2
11 3 A
17 s 2
12 Wil 3

Assume that we have a procedure LOOKUP which does this table
look-up for us. Using it, we can make a procedure to choose the

/NEWCHIPS/

NI

number of chips the computer will take on any move.

g

Report No. 1889 RBolt Beranek and Newman Inc.

ASSIGNMENT CHOOSE

NAME OF PROCEDURE: TO CHOOSE /CHIPS/
INPUT: /CHIPS/ - The number of chips in the game.

EXAMPLES :

<PRINT CHOOSE OF 2
1
<PRINT CHOOSE OF 3
2
<PRINT CHOOSE OF 13
3

-«

TO CHOOSE /CHIPS/
14 CALL

THING: REM OF /M /%)

NAME : nNEM

28 CALL

THING: LOOKUP OF /i /1/
/

NAME: "MOVE"

3¢ RETURN _ /M v iE/

END

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT REM

The NIM strategy needs to find the remainder of a number when
divided by 4. One way to find the remainder is to keep
subtracting 4.

Example 1l: /NUMBER/ is 17
Subtract 4 from 17 .
13

/NUMBER/ is 17 - 4 =
Subtract 4 from 13
/NUMBER/ is 13 - Y

il
O

Continue until:
STOP RULE: /NUMBER/ isn't GREATER OF /NUMBER/ AND Y
RETURN /NUMBER/

17, 13, 9, 5, 1 REM 17 = 1
Example 2: /NUMBER/ is 18

18, 14, 10, 6, 2 REM 2 = 2
Example 3: /NUMBER/ is 19

19 15, 1, 7, 9 REN 19 = 3

Here is a program skeleton for this procedure in proper LOGO:

TO REM /NUMBER/

18 IS /N Mi2£R/ GREATER OF Y BER [AND o

28 JF NP RETURN /NIMBER [/

3¢ CALL
THING: DIFFERENCE OF /N ym 3ER/ AND 4
NAME: _"WEw'NUp BER”

L@ RETURN REM /WEW NV BER /

END

-208-

{
] Report No. 1889 Bolt Beranek and Newman Inc.
What would the machine print if told -
M TRACE REM
: REM 11
é REP " 22"
R M " 7 “

pEm 3" .

Ren) RETUVRNS 3
i ReEM RETURIN S A
REM RETLRNS 37

Fill in the result of
| PRINT REM 13

z

PRINT REM 1789423

} 3 ﬂ?fl’f Lo A,/f'/// ,?4‘1/(,(.' /

: PRINT REM "FOO"

3 CREATER ¢F "Fre AV D 475 upirs mesr pu
3 NP RE RS

5 L wrAS AT LanE of v weé).

P st e T o Y e e T R A e T R e T e P S A A S S e
. e w e

pr»--"”"" Xt o W - ks -

;.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT LOOKUP
We have to give CHOOSE a table look-up procedure.

NAME OF PROCEDURE: TO LOOKUP /NUMBER/

INPUT: /NUMBER/ is the answer received from REM OF /CHIPS/
This answer will be elther g, 1, 2, or 3.

OUTPUT: The number of chips the computer will take.

EXAMPLES:

+<PRINT LOOKUP OF 3
2

<PRINT LOOKUP OF 2
1

<PRINT LOOKUP OF 1
3

+PRINT LOOKUP OF #
3

XL IS

Write a procedure LOOKUP and test it.

SR AR TR IR AR A

e kA e 3

-210-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT COMPLAY

We have written all the subprocedures needed for COMPLAY.

NAME OF PROCEDURE: TO COMPLAY /CHIPS/
INPUT: /CHIPS/ - The number of chips in the game.

EXAMPLES :

<PRINT COMPLAY OF 13
THE COMPUTER TAKES 3
19 The machine's reply

“

+<PRINT COMPLAY OF 15
THE COMPUTER TAKES 2

13

“

T0 COMPLAY /CHIPS/
12 CALL

THING: CHOOSE OF /¢ # i/

NAME: "MOVE"
2¢ PRINT SENTENCE OF "THE COMPUTER TAKES" AND //ict¢/

3¢ CALL
THING: DIFFERENCE OF /. '#//22/ AND _/Al(i't/

NAME: "NEWCHIPS"
4y RETURN /wiL CH) ML)

7

END

-211-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT NIMPLAY

We can now write the procedure which controls play.

NAME OF PROCEDURE: TO NIMPLAY /CHIPS/ AND /PLAYER/
INPUTS: /CHIPS/ = Number of chips in game
/PLAYER/ - Name of next player

EXAMPLE:

«NIMPLAY OF 17 AND "YOU"

YOU MAY TAKE 1, 2, OR 3

*

(IF YOU TYPE 2, IT SHOULD SAY)
15 CHIPS REMAIN

THE COMPUTER TAKES 2

13 CHIPS REMAIN

YOU MAY TAKE 1, 2, OR 3

*]
AND SO ON. .

«LIST NIMPLAY

TO NIMPLAY /CHIPS/ AND /PLAYER/

18 IS /CHIPS/ "g"

2§ TIF YES PRINT SENTENCE (F JPLAYER] AND “wen! !
30 1/ YEES RETLRA
4g IS /CHIPS/ "1"

5@ IF YES PRINT S &N 7ENCE. _CFELPLA YEIRS AND LT/
68)2 YES TRETLRN

65 PRINT SENTENCE OF _/cy/74/75/ AND "CHIPS REMAIN"

"

(continued)

=212~

Report No. 1889 Bolt Beranek and Newman Inc.

70 IS /PLAYER/ "YOU"
89 IF YES CALL
THING: YOURPLAY OF /(4 //75
NAME: "NEWCHIPS"
9¢ IF YES CALL
THING: "COMPUTER"
NAME: WS PLA YE R
14§ IF NO CALL
THING: ('cp/ [/ AY L/ [412
NAME: "NEWCHIPS"
119 IF NO CALL
THING: "Yoo'
NAME: _"WEWPLAHY ¢ K"
12¢ RETURN NIMPLAY OF /NEWCHIPS/ AND /NEWPLAYER/
END

-213-

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT SUPERNIM
Last of all, we write a procedure to set up a game.

NAME OF PROCEDURE: TO SUPERNIM
INPUTS: NONE

EXAMPLE:

+SUPERNIM

HOW MANY CHIPS DO YOU WANT IN THE GAME?

* (The player must type a number)
DO YOU WANT TO GO FIRST?

* (Player types YES or NO)

(SUPERNIM starts up NIMPLAY and tells it the number of chips in
the game and the name of the first player)

(When NIMPLAY is finished, SUPERNIM continues its questions)

DO YOU WANT TO PLAY AGAIN?
(The player types YES or NO)

(If the answer is YES - SUPERNIM starts a new round and asks
for the number of chips, etc.)

(If the answer is NO - SUPERNIM says BYE and stops)

Write a procedure SUPERNIM and then play some games with the
computer.

-214-

Report No. 1889 Bolt Beranek and Newman Inc.

Arithmetic Operations

Bttt S G R Bty ahd o ST SR e Rl S i i

LOGO does not have built-in multiplication or division operations
-~ these have to be written as procedures in terms of addition
and subtraction. We gave students the assignment of writing
their own integer multiplication and division procedures (though

i we provided fairly complete skeletons) to better understand how
these operations work and can be used. At the same time, we did %
not think that the class would find arithmetic very appealing.

We did not present multiplication and division procedures for

their own interest but introduced them, rather, when they were E
needed by the students to do something else that was important ﬁ
to them (e.g., the pattern drawing and number guessing programs). :
To our surprise, however, most students enjoyed doing long
multiplication and long division in the form of programs.

ASSIGNMENT MULTIPLY

;
% LOGO has built-in procedures for adding (SUM) and subtracting ;
% (DIFF). Often, however, we have problems where the operatilons t
of multiplication and division are useful also. These aren't
built into LOGO so we'll have to write them ourselves. Since it %
is always a good practice to do one thing at a time, and usually F
best to do the simplest things first (since that way if the |
harder is too hard, we shall at least have done something),
? we'll start with multiplication.

N A
B T A

Well, it is easy enough to start. We just declde on a name for
the procedure (say MULTIPLY) and its two inputs (say /X/ and

/Y/).

-215=-

- " N L BT S e e sy
e i T Ll LW DT

Report No. 1889 Bolt Beranek and Newman Inc.

But, how should we instruct LOGO to multiply two numbers? What
does the product of 6 and 3 mean? One way to write it is 6+6+6.
That seems a good way to write the procedure, just using addition.
We want to add up /X/ the number of times given by /Y/. A neat

way to do this 1s to use recursion. Here is our procedure:

«TO MULTIPLY /X/ AND /Y/
>1¢ IS /Y/ "g"
>2ﬂ IF YES RETURN "g"

>3 RETURN SUM OF /X/ AND MULTIPLY OF /X/ AND (DIFF OF /Y/ AND 1)
>END :

MULTIPLY DEFINED

-+

In ordirnary (infix) notation, Line 30 says: XxY = X+Yx(Y-1).

Now that we've got this procedure, let's use it. First, test it
out with some numbers. Then, try these exercises which give you
a chance to use MULTIPLY in some other procedures.

(1) Write a procedure called SQUARE whose output is the square
of its input.

(2) Write a procedure called CUBE that cubes its input.

(3) Write a procedure (and think up a name for it) that takes
for an input a sentence like "34 X 12" and returns the
product, 4088.

(4) Write a procedure that takes a number and multiplies it by
14. Can you do this without using MULTIPLY?

(5) Write a procedure called POWER that raises its first input
to the power given by its second input. For example:
POWER OF "2" AND "3" would be 2 cubed or 8, and
POWER OF "3" AND "4" would be 3l1l or 3Xx3x3x3 or 81.

(Hint: The principle behind this one is very much like the
principle behind the MULTIPLY procedure.)

Report No. 1889 Bolt Beranek and Newman Inc.

(6) Write a procedure CASH /QUARTERS/ AND /DIMES/ AND /NICKLES/
AND /PENNIES/ that takes the number of each kind of coin
and returns the number of cents it all comes to. For

example, CASH OF '2' AND 1" AND "4' AND "8" would be 88.

ASSIGNMENT MULT

By now you've probably noticed that MULTIPLY isn't as fast as
you might like, especially for large numbers. We can go a long
way toward correcting this problem by using the trick mentioned
in exercise (4) of the MULTIPLY assignment. This is the same
trick that you've been using for years, ever since you learned
to do long multiplication. Set up the multiplication problem
234x5U47 on a piece of paper and work it out. Your work probably

looks 1like this (unless one of us made a mistake).

936
1170
127998

Here, instead of multiplying by 547, all at once we multiplied
by 7, then by U4, and then by 5. Mathematically speaking, what
we've done is used the distributive law and said that
23Ux(500+40+7)=234x500 + 234x40 + 23Lx7 = 117000+9360+1638 =
127998. For us, multiplying by 500 is not appreciably slower
than multiplying by 5 but for MULTIPLY it certainly is. When
MULTIPLY multiplies by 5 it counts down 5,4,3,2,1,8, but when
it multiplies by 500 it counts down 500,499,498,497,496, ...,
2,1,8, nearly 100 times as much work. We saved ourselves all
that work by the trick of not multiplying by 500 all at once.
We first multiplied by 5 in the normal way and then multiplied

-217=

e s -

S T Tt S

T e

W s o

Report No. 1889 Bolt Beranek and Newman Inc.

by 100 in a clever way that took almost no time at all. (Can
you name the law that says multiplying by 500 gives the same
answer as first multiplying by 5 and then by 100? If you can't,
there is a big hint in exercise (1) following.)

How can we write a LOGO procedure that will use this trick and
so be able to multiply 234x547 quickly? Well, what we want the
procedure (let's call it MULT for fast multiplication) to do is

to multiply 234 by 7, add that to 234x4x10, and add that to
234x5x100.

«TO MULT /X/ AND /Y/
>18 1S /Y/ /EMPTY/
>2% IF YES RETURN '"'g"

>3 RETURN SUM OF MULTIPLY OF /X/ AND CLAST OF /Y/) AND MULT OF
C(WORD OF /X/ AND "g") AND BUTLAST OF /Y/
>END

-+

This is a pretty complex looking procedure. Some of the follow-
ing exercises will help you understand it.

(1) Why do these two computations give the same answer?
(a) Multiply a number by 500. (b) Multiply the number
by 5 and then multiply that answer by 100 Hint: 1In (a),
write X®*500 as X¥(5%¥100). 1In (b), write X times 5 times
100 as (X¥5)#100.

(2) Write line 3@ of MULT in ordinary form using "327" for /X/

and "U438" for /Y/. Remember that MULTIPLY and MULT both
mean multiply, so use an X for MULTIPLY and an ¥® for MULT.

-218-

TOR refeics o O

B 1 ery N

g

Report No. 1889 Bolt Beranek and Newman Inc.

(3) Your answer to (2) should be 327x8 + 327@%43. MULT will
now be called again with /X/ as 3278 and /Y/ as 43. How
will line 3@ come out this time? é

(4) Substitute the answer to (3) into the answer from (2) to k
get 327x8 + 327@0x3 + 327@@8*4. So, MULT gets called again.
This time round we get 327x8 + 327@x3 + 3278@x4 +
327088%/EMPTY/. Now MULT finally gets to use line 2@ and
can finish. Work out 327x438 on paper and try to point

R —=——— Tt

out the similarities and differences between the way you do
it and the way MULT does it.

(5) Do a complete round analysis [as in exercises (2), (3), and
(4)] for MULT OF "73" AND "84,

(6) The commutative law says that AxB=BxA. Yet there is a
difference between MULTIPLY OF '"32576'" AND "3" and MULTIPLY
OF "3"™ AND '"32576" even though the answers are the same.
What is this difference? Try it out on the computer to

make sure.

(7) The remark in exercise (6) is also true about MULT except
that the difference is very much less in this case. Can

you explain why?

After this work on multiplication, writing a procedure for

division should seem a great deal easiler.

-219-

e SRR R

Report No. 1889 Bolt Beranek and Newman Inc.

| ASSIGNMENT DIVIDE
}

g% NAME OF PROCEDURE: TO DIVIDE /DIVIDEND/ AND /DIVISOR/
| INPUTS: /DIVIDEND/ - Any numeral
/DIVISOR/ - Any numeral

ANSWER: A two-word sentence - the first word the quotient -
the second (last) word is the remainder.

+<PRINT DIVIDE OF 7 AND 8
01

<PRINT DIVIDE OF 12 AND 3
4 0

<PRINT DIVIDE OF 1@@ AND 5@
2 0

«PRINT DIVIDE OF 33 AND 1§
3 38

“

To write DIVIDE we use a subprocedure called DIV,

TO DIVIDE /DIVIDEND/ AND /DIVISOR/
12 RETURN DIV OF /DIVIDEND/ AND /DIVISOR/ AND "g"
END

-220~-

Report No. 1889 Bolt Beranek and Newman Inc.

DIV has 3 inputs:
TO DIV /DIVIDEND/ /DIVISOR/ /QUOTIENT/

On the first round /QUOTIENT/ will be @. On each round /QUOTIENT/
will increase. When the procedure stops, /QUOTIENT/ will be the

proper answer. This is how it will work.

DIV 8 3 @

1st Round:
/DIVIDEND/, = 8 /DIVISOR/, = 3 /QUOTIENT/ = @

Subtract /DIVISOR/ from /DIVIDEND/
Add 1 to /QUOTIENT/.

2nd Round:
/DIVIDEND/,= 5 /DIVISOR/,= 3 /QUOTIENT/ = 1
3rd Round:
/DIVIDEND/, = 2 /DIVISOR/, = 3 /QUOTIENT/ = 2

This time we do not subtract 3 from /DIVIDEND/.
/DIVIDEND/ is smaller than /DIVISOR/ we stop.

/QUCTIENT/ should be the quotient of 8 divided by 3.

Write a LOGO procedure to do this. Don't forget the checks:

Stop when /DIVIDEND/ is smaller than /DIVISOR/.

-221-~

As soon as

It is.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT DIV

NAME OF PROCEDURE: TO DIV /DIVIDEND/ AND /DIVISOR/ AND /QUOTIENT/
I

INPUTS: /DIVIDEND/ - the dividend - any numeral 5
/DIVISOR/ - the divisor - any numeral

ANSWER: A two-word sentence - FIRST OF SENTENCE is the quotient-
LAST OF SENTENCE is the remainder.

EX¥AMPLES:

+PRINT DIV OF 12 AND 5 AND @

2 2

«PRINT DIV OF 14 AND 7 AND &

2 ¢ |

«PRINT DIV OF 23 AND 12 AND g :
[L

«PRINT DIV OF 42 AND 11 AND ¢
3 7

e
- it . . =

-

T e

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT DIV

SKELETON

TO DIV /DIVIDEND/ AND /DIVISOR/ AND /QUOTIENT/

q 16 1S /iv, DEND/ GREATER OF /Diy/ScR/ AND /D1y pEND/
28 IF NO RETURN SENTENCE ¢F /o071 ENT/AND [DIViDEND/
i 38 CALL

THING: JJFEERENCE EF [DIVIDEND [AND /Di1viSc R/
NAME: "NEWNUM"

4g CALL

THING: Swpl 0 /g0 071 ENT) AND]

NAME: "NEWQUO"
5¢ RETURN DIV OF /gy yustl /AnD /D iv1sei/ Ans /NEw &/
END

; A fast division procedure ("long division") was then presented

3 in a way similar to the development of MULT from MULTIPLY. Some
special division procedures (like DIV2, division by 2) also were
written as the need for them arose in various projects (such as
the number guessing games).

CLOCK ARITHMETIC

During the course, the students were introduced to clock arith-

metic (remainder arithmetic, modular arithmetic) in a few contexts.

= |

T

pie

-223-

Report No. 1889 Bolt Beranek and Newman Inc.

Clock arithmetic base 4 had been used in NIM. Clock arithmetic
with various bases had been used in the work on oscillators.

Clock arithmetic based on 7 was used in designing a procedure
DATEGAME to calculate the day of the week on which a given pas?t
(future) date fell (will fall).

+<DATEGAME
TYPE THE DATE
®2 13 1944

THAT WAS A SUNDAY
<+

(The students liked being able to assert to their peers authorita-
tively that 6+1 could be equal to zero.) A general clock arith-
metic procedure was written and used in an interactive addition
quiz. The person taking the quiz supplied his own problems (his
typing is underscored):

+«CLOCKADD

LET'S ADD IN REMARITH. CHOOSE A DIVISOR.

WHAT DIVISOR DO YOU WANT?

%6
LET'S ADD IN 6 MINUTE CLOCK ARITHMETIC.

PE A NUMBER

w—

PE ANOTHER NUMBER

o —

Y
s
Y
2
WHAT IS THE SUM OF &4 AND 57
o)

WRONG. THE ANSWER IS 3.

IYPE A NUMBER

E%PE ANOTHER NUMBER

Q%AT IS THE SUM OF 7 AND 67
R%GHT.

Further programs for arithmetic operations were necessary in
work arising in the algebra sequence. One example, the extension
of multiplication to signed integers, is discussed in the next

section.

-224-

Report No. 1889 Bolt Beranek and Newman Inc.

Algebra Teaching Sequence

The last weeks of the course were spent on a sequence of class-
room and laboratory assignments and projects that led our
seventh graders into work on algebraic equation generation and
the construction of algebra teaching programs. The sequence
began with a unit on random sentence generators. The first

problem was to construct a simple, but surprisingly useful,
procedure called MEMBER.

Consider the problem of constructing a formal algorithm for the
following process: given a number N and a list L find the Nth

member of L. This problem was presented to children in something
like the following form:

(a) Preliminary Explanation

MEMBER is an operation with two inputs. Examples of input and
output are:

MEMBER "ABC" 1 = "A"

MEMBER 'ABC' 3 = '"¢"

The intention is:

MEMBER /SENTENCE/ /NUMBER/ = /NUMBER/th word of /SENTENCE/

Questions for discussion: What are proper inputs and what are
funny inputs? [We use "funny" as a technical word for the very
important concept illustrated here for /SENTENCE/ and /NUMBER/.]

Proper Funny

HABH 1 HABH ﬁ

"ABCD' 4 "AB" 1¢

etce. "AB'" "CAT"
HAH __3

etc.

[N T TPt VIS O e e 5 -

e
o e e

Report No. 1889 Bolt Beranek and Newman Inc.

What should we do about funny inputs? List alternative solutions:
"ABC" 18 could be:
(1) Undefined, in which case the computer will complain, e.g.,

PRINT MEMBER "ABC" 14
THERE IS NO SUCH WORD IN THE SENTENCE

(2) Defined, in which case there is some output. What could the
output be? Suggestions included:

/EMPTY/
nen [always the last letter of /SENTENCE/]
nan [because 1@g=1 in 3-clock arithmetic, as the

children said it]

Further discussion would usually be deferred to a later stage.
But the class understood:
that MEMBER was specified for a certain domain of inputs,

that it can be extended to a larger domain,

that the extension could be done in different ways,

that some ways are neater than others, e.g., /EMPTY/ and
"A" are neater than "C" which is neater than "B" (at any
rate, as far as we can judge on the justification given),

that the purpose of MEMBER will often determine the choice
among possible extensions and, if so, will override the
consideration of mathematical taste expressed by "neater
than".

(b) Planning the Procedure

An example of a heuristic plan is
(1) Pind easy cases
(2) Reduce the hard cases to easy ones.

The class learned that these heuristic plans do not always work -

-226-

SIS SR e T P irmniere AN

Report No. 1889 Bolt Beranek and Newman Inc.

but the possession of a collection of plans enabled one to "do
something" when faced with a problem instead of being forced to

sit in a trance and hope for inspiration.

The easy case for MEMBER 1is
/NUMBER/ = 1.
So we began by writing this part of the procedure:

TO MEMBER /SENTENCE/ /NUMBER/
IS /NUMBER/ 1
IF YES RETURN FIRST OF /SENTENCE/

Now we return to the reduction of the harder cases to easier

cases. This idea was extensively discussed throughout the course
together with heuristics for carrying out the reduction such as:
set up a physical model. Although in this case a model would
probably not have been necessary, we constructed one to illustrate
the idea. In any case, if some children did not seem to be
engaging their minds in the problem, we often urged them to

invent a model as a constructive step.

Model for MEMBER "ABCDE" 4

~@) (@)~ © @__@..... @@ @@

Strings of beads representing Bin of beads
"A B CDE" representing 4

Question: How can one tell a child to find MEMBER "ABCDE" 4°
Answer: Take the beads out of the bin one at a time and peel
beads off the string, one for one.

-227=

S —_— I - . L . 5 . - 3 . o T _—_——~,

Discussion of the model led to:

The problem MEMBER /SENTENCE/ /NUMBER/

is equivalent to the problem

MEMBER BUTFIRST OF /SENTENCE/ DIFFERENCE OF /NUMBER/ AND 1

So we make two new things:

BF /SENTENCE/ (where BF is the LOGO abbreviation for
DIFF /NUMBER/ 1 BUTFIRST, and DIFF for DIFFERENCE)

If we make new things, we should give them names; so let's use
"NEWSENT" and "NEWNUM" as the new names.

(¢) Procedures for MEMBER

<TO MEMBER /SENTENCE/ AND /NUMBER/
>19 IS /NUMBER/ 1
>2f IF YES RETURN FIRST OF /SENTENCE/

>30 CALL
THING: BUTFIRST OF /SENTENCE/
NAME: '"NEWSENT"
>4 CALL
THING: DIFF OF /NUMBER/ AND 1
NAME: "NEWNUM™"
>50 RETURN MEMBER OF /NEWSENT/ AND /NEWNUM/
>END
-

A shorter statement:

«TO MEMBER /S/ /N/

>1¢ IS /N/ 1

>28 IF YES RT F /S/

>3 RT MEMBER BF /S/ SUM /N/ -1
>END

-

Report No. 1889 Bolt Beranek and Newman Inc.

Report No. 1889 Bolt Beranek and Newman Inc.

(d) Adding Tests for Funny Inputs

>2 IS NUMBERP /N/ "TRUE"

>4 IF NO COMPLAIN

>6 IS ORDERP 1 /N/ COUNT /S/ "TRUE"Y
>8 IF NO COMPLAIN

These 1lines can be inserted in MEMBER to take care of certain

kinds of funny inputs. They presuppose the procedures COMPLAIN

and ORDERP:

<TO COMPLAIN

>1@ PRINT SENTENCE OF SENTENCE OF "MEMBER IS NOT DEFINED FOR
THE INPUTS" /S/ AND /N/

>END

<

<TO ORDERP /LOW/ /MIDDLE/ /HI/

>1¢ 1S GREATERP /MIDDLE/ /HI/ "TRUE"
>2@ IF YES RETURN "FALSE"

>30 1S GREATERP /LOW/ /MIDDLE/ "TRUE"
>4y IF YES RETURN "FALSE"

>50 RETURN "TRUE"

>END

P
Where NUMBERP is a predicate which has the output "TRUE" only
if 1ts input is a number; GREATERP is a predicate with two
numerical inputs and whose output is "TRUE" only if its first

input 1s greater than its second input.

Planning and debugging were learned through work with simple

procedures such as MEMBER. Their real pay-off came in much more

structured projects and teaching sequences. Thus, the final
sequence of work assignments took our seventh grade children

from MEMBER to making "random English" sentence generators of

increasing complexity, then to algebraic equation generation and

finally to writing algebra teaching programs.

-229-

Report No. 1889 Bolt Beranek and Newman Inc.

(a) Random Sentence Generation

The following program, called RANDOMSELECT, selects a word
randomly from a list.

<TO RANDOMSELECT /SENTENCE/

>18 CALL
THING: /RANDOM/
NAME : "NUMBER"
>2@¢ RETURN MEMBER /SENTENCE/ /NUMBER/
>END
<+

Note that RANDOMSELECT is simply a version of MEMBER that uses
the operation /RANDOM/ for obtaining the second input.

A seventh grader's program, SIMPLESENTENCE, shown below, chooses
at random a noun and a verb from two prescribed lists, /NOUNLIST/
and /VERBLIST/ which are LOGO sentences. It designates these
"SUBJECT" and "ACTION", respectively. It then makes a sentence
out of these and prints it. If /NOUNLIST/ contains words 1like
"GIRLS" and "BOYS" and /VERBLIST/ contains words like "DANCE"

and "FLY", SIMPLESENTENCE generates sentences like "GIRLS FLY"
and "BOYS DANCE".

@ <70 SIMPLESENTENCE /NOUNLIST/ AND /VERBLIST/

| >18 CALL
‘ THING: RANDOMSELECT OF /NOUNLIST/ }
NAME: '"SUBJECT" i
>2@ CALL 1
THING: RANDOMSELECT OF /VERBLIST/]
NAME: "ACTION"]
>3 PRINT SENTENCE OF /SUBJECT/ AND /ACTION/]
>4 SIMPLESENTENCE /NOUNLIST/ AND /VERBLIST/

1 >END

<

ST v ¢

-230-

Report No. 1889 Bolt Beranek and Newman Inc.

The program is recursive - line U@ calls for the execution of
SIMPLESENTENCE again and, since there is no STOP command, the

program continues generating sentences endlessly.

SIMPLESENTENCE was the first of a series of programs constructed
for generating even more elaborate grammatic English (and French)
nonsense sentences. More complex programs were built upon the
simpler ones. Thus, in quick succession, verbs were given an
object, and adjectives and articles were incorporated. The
extended SIMPLESENTENCE procedure was then used in compound
sentence generators, like one that joined together simple sen-
tences with connectors like "BECAUSE" and "WHILE".

The following is a sample of student printout from one of the

later English sentence programs in the series.

THE MENTAL CAT DIGS THE WILD COMPUTER BECAUSE THE FUNNY BOY
LOVES THE CRAZY GIRL.

THE WILD DOG EATS THE GIRL ALTHOUGH THE BIG CAT CHASES THE
LOVELY COMPUTER WHILE THE GOOFY GIRL EATS THE WILD BOY.

A COMPUTER RUNS.

In a brief excursion, appropriate (and, to these children, non-
trivial) modifications were made in the English programs to make
possible the generation of French sentences. Some results are
illustrated by the following printouts. The programs were
designed by the students; note the differences shown across

these samples.

~231-

pe——
\ T

Report No. 1889 Bolt Beranek and Newman Inc.

LE CAHIER EST GRAND

LA FILLE EST HAUTE

LE CAHIER EST HAUT

LE HORLOGE EST GRAND
LE CRAYON EST VERT

LA CHAISE EST PETITE
LA SERVIETTE EST NOIRE
LE SAC EST PETIT

LA GOMME EST GRANDE \
LA MONTRE EST PETITE
LE CAHIER EST BRUN

LE SAC EST BRUN

LA GOMME EST VERTE

MUR NOIR PRENDRE ET FILLE BLEU PARLER ET CRAYON BLEU PARLER
VERT ETROITE ENTRE ET ROBE PETTITE SORTIR ET CHIEN PETTITE FINIR

ROBE GRANDE PARLER ET CHAT ROSE ETRE ET

VERT LARGE ALLER

SAC BLEU PRENDRE ET CHAT BLEU PRENDRE ET VERT ROSE FINIR
SAC GR1S PARLER ET VERT LARGE ETRE ET MUR PETTITE PRENDRE

«FRENCH

WHEN YOU SEE THE FIRST * TYPE IN A NAME
TYPE IN A ILLREGELAR VERB) WHEN YOU SEE
YOU WANT ME TO WRITE

*PROMENER

*NOUS

NOUS PROMENONS

WHEN YOU SEE THE FIRST * TYPE IN A NAME
TYPE IN A ILLREGELAR VERB) WHEN YOU SEE
YOU WANT ME TO WRITE

*FINIR

*ELLES

ELLES FINISSENT

WHEN YOU SEE THE FIRST * TYPE IN A NAME
TYPE IN A ILLREGELAR VERB? WHEN YOU SEE
YOU WANT ME TO WRITE

*VENDRE

*JE

JE VENDS

-232-

OF A FRENCH VERB (PLEASE DON°'T
THE SECOND * TYPE IN THE NOUN

OF A FRENCH VERB (PLEASE DON'T
THE SECOND » TYPE IN THE NOUN

OF A FRENCH VERB (PLEASE DON'T
THE SECOND * TYPE IN THE NOUN

ot TR A AT

Report No. 1889 Bolt Beranek and Newman Inc.

Algebra Quiz Programs

When the topic of sentence generation was introduced, students
asked if that wasn't English rather than mathematics. The issue

was resolved by the work in the next units, which were clearly

about mathematics - arithmetic and algebra - yet, equally clearly

derived from the earlier work on sentence generation.

The first unit, on algebra quiz programs, started with the
observation that very slight modification of sentence generation
programs allows one to generate mathematical sentences like those

encountered in arithmetic. Thus, expressions like

"1 + 1 = 2"
""ONE PLUS ONE EQUALS TwO"
g 4+ 2 = 31

"A COMPUTER CAN TALK BUT IT CAN DO SUMS ALSQO"
all are sentences in LOGO.

The first assignment was to make up an addition quiz program
following the example shown in the procedures GENSUM and QUIZZ1

(see next page). Interestingly enough, the childrens' own b
programs incorporated considerably more Ernglish embellishment f
and conversation than ours. Samples of printouts from two of
their programs are reproduced just after the assignment sheet,

-233~

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT GENSUM

Here are two skeletal procedures which, together, make up a quigz
program. QUIZZ1l, the top-level procedure, asks whether a
sentence like '5 + 3 = 8' is true or false. GENSUM generates
the true/false sentence.

TO GENSUM

13 CALL
THING: /RANDOM/
NAME: "N1"

28 CALL
THING: /RANDOM/
NAME: "N2"

34 CALL

THING: SENTENCE OF SENTENCE OF /N1/ AND "+" AND /N2/
NAME: "LE®FT"
Lg IS GREATER OF /RANDOM/ AND "gm" mwgn
58 IF YES CALL
THING: SUM OF /N1/ AND /N2/
NAME: "N3"
68 IF NO CALL
THING: SUM OF /RANDOM/ AND /RANDOM/

NAME: "N3"
72 RETURN SENTENCE OF SENTENCE OF /LEFT/ AND "=" AND /N3/
END
TC QUIZZ1

14 PRINT SENTENCE OF SENTENCE OF "IS" AND GENSUM AND "TRUE OR
FALSE?"

28 REQUEST "ANSWER"

32 PRINT SENTENCE OF "I THINK YOU REALLY MEANT TO SAY" AND
/ANSWER/

4g PRINT "LET'S TRY ANOTHER"

58 RETURN QUIZZ1

END

Try out QUIZZ1l and then make up your own arithmetic quiz program.

Report No. 1889 Bolt Beranek and Newman Inc.

«SCO0EBA

COME ON WAKE UP I AM YOUR FRIENDLY ADDITION MAN 1 HOPE YOU KNOW
ADDITION DO YOU ?

*YES

B+ 5

*5

YOU ARE SMART BUT NOT BRILLANT BECAUSE YOU GOT IT RIGHRT LETS TRY AGAIN

1 + 9
*10

YOU ARE SMART BUT NOT BRILLANT BECAUSE YOU GOT IT RIGHT LETS TRY AGAIN

B + 6
*15

YOU IDIOT I THOUGHT YOU KNEW ADDITION LETS TRY AGAIN AND SEE IF YOU
KNOW IT THIS TIME

g + 6
*14
YOU ARE SMART BUT NOT BRILLANT BECAUSE YOU GOT IT RIGHT LETS TRY AGAIN

«SCO0NBA

COME ON WAKE UP I AM YOUR FRIENDLY ADDITION MAN I HOPE YOU KNOW
ADDITION DO YOU ?

*NO

YOU DUMMY DONT YOU KNOW ADDITION YOU WERE SUPPOSE TO LEARN IT IN THE
FIRST GRADE IF YOU DONT KNOW IT AERE IS A SIMPLE PROBLEM WHAT 1S THE
SUM OF 1 + 1 TO FIGURE THIS OUT I WILL DRAW 2 XS X X NOW COUNT THEM UP
AND WHAT IS THE SuMm ?

*2

IF YOUR SO SMART WHAT 1S THE SUM OF 5 + 3
*2

YOU SAID YOU KNEW ADDITION LETS TRY AGAGAIN
S+ 3

*8

YOUR VERY SMART BUT NOT AN EXPERT YET
IF YOUR S0 SMART WHAT IS THE SUM OF 8 + 1

L4 *
»]

Report No. 1889 Bolt Beranek and Newman Inc.

*TALKMATH

HERE I AM A MATH PROFFESSOR.NEVER THOUGHT 1°'D MAKE IT,DID YOU? I'M
GOING TO TEST YOU AND SEE KOW SMART YOU ARE.

ARE YOU SMART OR STUPID?

*SMART

WELL A SMART STUDENT HOPE YOURE NOT JUST SAYING YOURE SMART ANYWAY , TRY
THESE.

2 % 0=

WHAT 1S THE ANSWER?

*0 |

EXCELLENT.BRAVO! NICE WORK.NOW TRY SOME MORE
9 %« S =

WHAT 1S THE ANSWER?

%45

EXCELLENT«BRAVO! NICE WORK.NOW TRY SOME MORE
8 * 8 =

WHAT IS THE ANSWER?

%45

TO0 BAD BUT YOU GOT THEM WRONG C(YOU DUMMY)eTHE ANSWER IS 64
1 * 4 =

WHAT IS THE ANSWER?

*TALKMATH

HERE 1 AM A MATH PROFFESSOR.NEVER THOUGHT I°D MAKE I1T,DID YOU? I’M
GOING TO TEST YOU AND SEE HOW SMART YOU ARE.

ARE YOU SMART OR STUPID?

*STUPID

SO YOU'RE STUPID.I'LL TRY TO GIVE YOU EASY PROBLEMS.

9 + 3 =)

WHAT IS THE ANSWER?

*12

VERY GOOD,AND I THINK YOU’RE OFF TO A GOOD START.MAYBE WE CAN TRY
ANOTHER ONE.

4 + 71 =

WHAT 1S THE ANSWER?

*11

VERY GOOD,AND I THINK YOU’RE OFF TO A GOOD START.MAYBE WE CAN TRY
ANOTHER ONE.

1 + 6 =

WHAT IS THE ANSWER?

*13

BOY!WHEN YOU SAY YOURE STUPID YOURE NOT KIDING! 7 THATS THE ANSWER.
1] ¢ 9 =

WHAT 1S THE ANSWER?

-236-

i E e

Report No. 1889 Bolt Beranek and Newman Inc.

In both of the examples shown, the students chose to take the
stance (and the tone, as they apparently see it) of a teacher,

and a rather strict one. Note that in the second of these

examples, the "smart" student is given multiplication problems

instead of addition problems. In both cases the mathematics is

carried out more correctly than the English. Both transcripts

show a directness in word choice that was not mirrcred in these

students' language arts classes. (We neither encouraged nor

discouraged them in their choice of words for praise or insult,

since these never exceeded acceptable bounds. Our own programs

obviously did not always serve as their models.)

Another algebra quiz assignment, TALKALGEBRA, ccncerning addition
word problems with signed numbers, was very closely descended
from English sentence generating procedures like SIMPLESENTENCE.
TALKALGEBRA uses two procedures - CHOOSE and PICK - that are
essentially the same as MEMBER and RANDOMSELECT. TALKALGEBRA
uses a procedure ALGTALK to generate a random number of sentences

such as

I GET 3 PIES
I LOSE 6 LOBSTERS
I BUY 2 TRUFFLES

where the numbers preceding the objects are chosen randomly, and

then queries the user on how many things remain.

In writing their variants of TALKALGEBRA, the students chose
theilr own words for the objects ("GOODIES"), the positive words
like "GET", and the negative words like "LOSE". After the list-
ing of the assignment, we show copies of two students' programs.
Note that in the second sample, the student has incorporated
negative numbers in his sentences.

-237-

Bolt Beranek and Newman Inc.

Report No.

ASSIGNMENT TALKALGEBRA

TO CHOOSE /SENTENCE/ AND /NUMBER/

19 IS /NUMBER/ "g"

20 IF YES RETURN FIRST OF /SENTENCE/

3% RETURN CHOOSE OF BUTFIRST OF /SENTENCE/ AND DIFFERENCE OF
/NUMBER/ AND "1"

END

TO PICK /SENTENCE/

19 CALL

THING:
NAME :
2@ IS /NUMBER/ GREATER OF /NUMBER/ AND COUNT OF /SENTENCE/
3¢ IF YES RETURN PICK OF /SENTENCE/
4g RETURN CHOOSE OF /SENTENCE/ AND /NUMBER/

END

/RANDOM/
"NUMBER"

TO TALKALGEBRA

1@ CALL

"PIES TRUFFLES LOBSTERS"

THING:
NAME :

2@ CALL

"GOODIES"
"MAKE GET BUY FIND"

THING:
NAVME:

38 CALL

"POSITIVEWORDS"
"LOSE SELL BREAK GIVE"

THING:
NAME:
g ALGTALK OF "g"

END

"NEGATIVEWORDS"

TO ALGTALK /TOTAL/

5 CALL

PICK OF /GOODIES/

THING:
NAME:

19 CALL

"OBJECT"
/RANDOM/

THING:
NAME :
2@ IS PICK OF "+ -
3¢ IF YES CALL
THING:
NAME :
g IF YES CALL
THING:
NAME :

"NUMBER"
PICK OF /POSITIVEWORDS/
"ACTION"

SUM OF /TOTAL/ AND /NUMBER/
"TOTAL"

{(continued)

Report No. 1889 Bolt Beranek and Newman Inc.

54 IF NO CALL
THING: PICK OF /NEGATIVEWORDS/
NAME: "ACTION"
6@ IF NO CALL
THING: DIFFERENCE OF /TOTAL/ AND /NUMBER/
NAME: "TOTAL"
7@ PRINT SENTENCE OF SENTENCE OF SENTENCE OF "I" AND /ACTION/
AND /NUMBER/ AND /OBJECT/
8¢ IS PICK OF "STOP GO GO GO GO GO GO" "GO"
94 IF YES RETURN ALGTALK OF /TOTAL/
142 IF NO PRINT "HOW MANY THINGS DO I HAVE NOW?"
112 REQUEST "ANSWER"
12¢ IS /ANSWER/ /TOTAL/
13¢ IF YES PRINT "CALLOO CALLAY"
149 IF NO PRINT "THAT IS NOT SO"
158 RETURN ALGTALX OF "g"
END

Make up your own words for TALKALGEBRA. Modify the procedures
some other ways you can think of, too.

+<TALKALGEBRA

I TAKE 3 EGGS

I MAKE 1 FISH

HOW MANY THINGS DO I HAVE NOW?
N

CALLOO CALLAY

I GIVE 3 CAKES

I SELL 7 FISH

I GET 1 MARMALADE

I TAKE 3 CAKES

HOW MANY THINGS DO I HAVE NOW?
%3

THAT IS NOT SO

-230~

Report No. 1889 Bolt Beranek and Newman Inc.

*TALXALGEBRA

1 LOSE 8 LOBSTERS

1 STEAL 6 SUBS

I BREAK S PIES

HOW MANY THINGS DO 1 HAVE NOW?

k=T

BOY THATS NEAT IT TOOK ME ALONG TIME TO WORK OUT HOW THIS DUM PROCEDURE
WORKSs, BUT LOOK AT YOU WIZZIN BY IT LIKE IT WAS JUST ANOTHER PROBLEM
1 GET -1 LOBSTERS

HOW MANY THINGS DO I HAVE NOW?

*=4 '

TO BAD -1

GET -0 PIES

STEAL 9 LOBSTERS

GET 4 LOBSTERS

80OMB -5 PIES

BOMB ® LOBSTERS

BUY =3 LOBSTERS

MAKE 8 LOBSTERS

BREAK -8 LOBSTERS

BREAK S SUBS

GET 3 LOBSTERS

STEAL -9 PIES

BOMB -2 SUBS

BREAK 3 PIES

HOW MANY THINGS DO 1 HAVE NOW?

*19

BOY THATS NEAT IT TOOK ME ALONG TIME TO WORK OUT HOW THIS DUM PROCEDURE
WORKS, BUT LOOK AT YOU WIZZIN BY IT LIKE IT WAS JUST ANOTHER PROBLEM

el (und ol (und Qund Pmd Pund () Qund Pung (g bud (el

Algebra Teaching Programs

The children already knew how to solve the addition problems
generated in the two quiz programs just described. In the next
unit, the children generated quiz problems that they didn't know
how to solve, except by trial and error in the simplest instances.
These new quiz problems were linear equations like those
encountered in ninth-grade algebra:

7X 4+ 8 71
2X + 3 9

-240-

By
e it

N K ocrmnne R T

. RTRTI, Lo N
E==oN o
3

Report No. 1889 Bolt Beranek and Newman Inc.

In the childrens' programs, the coefficients were randomly chosen
by RANDOMSELECT and the problems were stated as questions of the

form:

3 ¥ /BOX/ + 5 = 11
WHAT IS /BOX/?

The following assignment introduced this new unit.
TEACHING ALGEBRA

In this unit we shall make procedures for teaching 9th-grade
algebra. One reason for doing this is the following theory: 1if
you teach the computer to teach 9th graders how to do algebra,

then maybe you will teach yourselves how to do it at the same time.

We shall use sentence generating and guessing games to help make

the teachlng program.

A sentence like

3 xO + 4 =1p
is a simple EQUATION. Finding out what number to put in the
box to make the sentence true 1is called SOLVING the equation.

In typing the equation for LOGO, we shall write it as
3 % /BOX/ + 4 = 18 JE e

Notice carefully:
(1) We use * instead of x so as to avoid confusing "times" and

the letter "X".

(2) We use /BOX/ because "BOX" is the name of the number we are

going to find.

-241~

AR

Report No. 1889 Bolt Beranek and Newman Inc.

(3) The equation is a LOGO sentence, so it must be typed in with
proper spaces. So 3¥/B0X/ +4 =6 is wrong: 3%¥/BOX/ should be
three words. 3 ¥ /BOX/ + 4 = 6 is right; it has seven words.

To make sure you understand all this, try these exercises:

<CALL
THING: "3 % /X/ + 4 = 1g"
NAME: MEg"

What is:
(1) F /E/ 0

(2) L /E/ L&
(3) F BF /E/ %k

(4) L BL BL /E/
(5) F BF BF /E/ /x/

(6) W OF W OF F OF BF OF /E/ AND F OF BF OF BF OF BF OF /E/
AND F OF BF OF BF OF BF OF BF OF BF OF /E/ ¥+=

The equation, /E/, is simple enough for you to solve. Write
down the THING of "X" that makes /E/ true.

/X/ = 2

The program for generating equations operates as follows. A
random number 1s chosen for the coefficient of /BOX/ (this is
called "TIMESNUM"); a second random number 1s chosen for the last
coefficient (it is called "SUMNUM"); then, instead of choosing a
random number for the right side of the equation, as one might

have expected, the last random number is chosen for /BOX/ itself.

-242~

s SN

I o COSIEN

v

Report No. 1889 7 Bolt Beranek and Newman Inc.

(That is the trick that made it possible for the children to know
the answer to the problem even though they themselves could not
solve it.)

As an example, if the program picked 4 for /TIMESNUM/, 2 for
/SUMNUM/, and 7 for /BOX/, it would compute b % 7 + 2 (using

; integer MULTIPLY procedures primarily written by the children)
; and then print:

4 ® /BOX/ + 2 = 3f
WHAT IS /BOX/?

The program would then wait for an answer to be typed in. The
seventh graders were given the problem of deciding whether the

answer was right or wrong and what to do in either case.

The following sample output was typical of their first attack
on this problem.

Computer:

6 #* /BOX/ + 9 = 27
WHAT IS /BOX/?

Computer:

HA HA. WRONG.
DONT YOU KNCW THE RIGHT ANSWER IS 3?2

They soon incorporated frills of various kinds, like large
coefficients, negative coefficients, the use of the CLOCK opera-

tion to measure how long the user took to answer, and so on.
For example, the following assignment shows how MULTIPLY was

chénged to take negative as well as unsigned (positive) inputs.

Tt uses the old MULT procedure which takes positive inputs.

Report No. 1889 Bolt Beranek and Newman Inc.

ASSIGNMENT NEGATIVES

Purpose: to be able to use negative numbers in the algebra
procedures.

(1) Change MULTIPLY so that it multiplies negative numbers.
Use these procedures.

TO COUNTNEG /X/ AND /Y/

19 CALL "@" "COUNT"

20 IS F/R ST _ OF /X/ "="

3¢ IF YES CALL SJ/ _ OF /COUNT/ AND "1" "COUNT"
hg IS 4 NST OF /y/ "-"

50 IF YES CALL

THING <¢)/¥1 OF /COUNT/ AND "1"
NAME: " ("coUNT "
68 RETURN /COUNT/

END

TO ABSOLUTE /X/

9 IS F/Rs 7. OF s/x/ ="

2¢ IF YES RETURN BT F//S T OF /X/
3¢ RETURN /X/

END

TO0 MULTIPLY /X/ AND /Y/

19 CALL
THING: MULT OFABSc Ly 7/F~ OF /X/ AND A/35¢c 4. /7 £ OF /Y/
NAME: "PRODUCT"

¢ IS COUNTNEG OF /X/ AND /v/ /"

3g IF YES RETURN woRpD OoF =7 AND /PRODUCT/
4@ RETURN /PRODUCT/

END

(2) Now make the algebra program generate equations like
3% /X/ + 4 =1

=244~

Report No. 1889 Bolt Beranek and Newman Inc.

In discussing the issue of how they might modify theilr programs
to help a user who was having difficulty solving a problem, the
seventh graders began to think about how to solve these problems
themselves. (Remember - because of the tricky way of generating
the problems, our students knew the right answers even though
they did not know an algorithm for solving these equations, nor
indeed that there was such a thing as an algorithm for solving

equations.)

One idea was to show when an answer was wrong that it plainly
did not satisfy the equation. Thus, '
Computer:

3 ¥ /BOX/ + 5 = 17
WHAT IS /BOX/?

User:
2
Computer:

YOU ARE WRONG. IF /BOX/ WAS 2,
3 % /BOX[+ 5 wWOULD BE 11, NOT 17.

The following sample printout shows a student's variant of this
in a mixed quiz incorporating different kinds of problems.

«ALGEBRA

TRY SOME OF THESE PROBLEMS ¢
3¢+ 7 =/E/

»10

YOU GOT IT

TRY SOME OF THESE PROBLEMS
3+ 9 = /E/

*]2

YOoU GOT IT

TRY SOME OF THESE PROBLEMS
2 % /BOX/ + 7 = 15

*4

YOU GOT IT BUT IT TOOK YOU 180 SECONDS

-245~

Report No. 1889 Bolt Beranek and Newman Inc.

7 » /BOX/ + 2 = 39

*24

YOU GOT IT WRONG TRY IT AGAIN !

7 *x 24 = 168

168 + 2 = 176

*1 4

7T % 14 = 98

98 ¢+ 2 = 100

*4

6 * /BOX/ + 4 = 10

*]

YOU GOT IT BUT IT TOOK YOU 7 SECONDS
8 * /BOX/ + 0 = P

*0 ~ .

YOU GOT IT BUT.IT TOOK YOU 3 SECONDS
S *x /JBOX/ ¢ 0 = 25

*$5

YOU GOT IT BUT IT TOOK YOU 3 SECONDS

Several children tried to do more. They realized that there
might be an explicit way of telling the user how to solve the
problem for any problem of this kind! By intense effort, often
involving extensive trial-and-error, some of the children were
successful in finding the algorithm! A sample printout from such
a successful program follows.

*ALGE
<38 * /BOX/ + +28B = ~124

WHAT IS /7BOX/ ?

*4

IT TOOK YOU 21 SECONDS TO ANSWER ME YOU KNUCKELBRAIN THAT 1S SLOW!
WRONG

THE REAL ANSWER 1S +04

AN EASY WAY TO GET THE ANSWER IS TO SUBTRACT +2& FROM ~-124 AND THEN TRY
TO DIVIDE =38 INTO =-152

-246-

T - T

i Report No. 1889 Bolt Beranek and Newman Inc.

-78 * /BOX/ + +97 = =3BP23

WHAT IS /BOX/ ?
*+35 ,
IT TOOK YOU 33 SECONDS TO ANSWER ME YOU KNUCKELBRAIN THAT 1S SLOW!

WRONG
THE REAL ANSWER IS +40
AN EASY WAY TO GET THE ANSWER IS TO SUBTRACT +97 FROM -3023 AND THEN

TRY TO DIVIDE =78 INTO -3120

=31 % /BOX/ + +50 = =-2802

WHAT 1S /BOX/ ?
*+92
IT TOOK YOU 19 SECONDS TO ANSWER ME YOU KNUCKELBRAIN THAT IS SLOW!

GOOD
-S4 * /BOX/ + +09 = =477

WHAT 1S /BOX/ ?

*2

YOU MUST BE A BRAIN TO ANSWER ME IN S SECONDS
WRONG

THE REAL ANSWER 1S +09

AN EASY WAY TO GET THE ANSWER IS TO SUBTRACT +89 FROM =477 AND THEN
TRY TO DIVIDE =S4 INTO =486

In the example just shown, the student incorporated large nega-
tive numbers with a vengeance! Other students pursued different
goals. For example, the following printout shows the amalgamation
into a quiz of some personal, non-mathematical problems. The
student did not go so far with algebra problems as the last one,
but he started from a more remote and alien mathematical past

and his relative progress was equally as impressive to us.

-{"
?
:
!
%
§
?

Report No. 1889 Bolt Beranek and Newman Inc.

«MUL TEACH

4 x /BOX/ = 20

WHAT]S /B0OX/?

*S

VERY GOOD. YOUR A SMART LITTLE DEVIL. BUT YOU TOOK 3 SECONDS

WOULD YOU LIKE TO NO MORE

*YES

ITS BEEN LIKE THIS, YOU SEE ALONG TIME AGO MY MOTHER SAID 1 WAS NOT
AGING LIKE ALL THE OTHERS, SO WE GOT A CUPUTER DOCTOR TO HELP ME, AND
HE DID. SO NOW YOU NO WHY I AM SO OLD

8 * /BOX/ = 32

WHAT 1S /BOX/?

%4

VERY GOOD. YOUR A SMART LITTLE DEVIL. BUT YOU TOOK 2 SECONDS

WOULD YOU LIKE TO NO MORE

*NO

BOY ITS NOT OFTEN YOU HERE A STORY LIKE MINE, BUT SINCE YOU DO NOT 1
NOW RETURN YOU TO YOUR SO CALLED HUMAN FUN HA HA HA

8 * /BOX/ = 48

WHAT IS /BOX/?

*8

/BOX/ 1S 6

IF YOU THiNK YOUR S0 SMART WHY DID YOU GET IT WRONG. OR WHERE YOU
THINKING OF TRICKING THEY OLDEST COMPUTER IN THE WORLD. PLEASE DO NOT 1
AM 558 YEARS OLD AND DO NOT WISH TO DIE NOWe

WOULD YOU LIKE TO NO MORE

*NO

BOY ITS NOT OFTEN YOU HERE A STORY LIKE MINE

At the end of the course, students were extending their teaching
programs to include equations of variable form and we were

beginning to incorporate algebra word problems into new teaching
programs. ¥

-248-

S emTm ATz eI - - TR

Report No. 1889 Bolt Beranek and Newman Inc.

4.4 Evaluation

This section comprises the results and conclusions of the research
described in the body of the report. The difficulty of evaluating
1limited educational experiments by objective measures is well
known to us. Nevertheless, we have done some testing. We prefer
the test of critical judgment by appropriate persons - intelligent,
informed, and truly objective mathematicians and mathematics
educators - based on direct personal contact with the children.

We have carried out some evaluation of this kind also.

We first discuss the results of standard testing of our students
with the Iowa Tests of Basic Skills. We then discuss phase
(i.e., track) placement, a rank measure of achievement level

that is standardly used in the Lexington school system. Since
phase placement decisions about a student are made by one teacher
but reconsidered by others, change of phase placement is a com-
pound subjective measure of progress. We next include the judg-
ments made by four experienced and well-known members of the
mathematics-education community who each made several trips to
the classroom to monitor the teaching experiment at first hand.

Last of all, we give our own judgments.
Achievement Test Results

Each year, in October, all students at Muzzey Junior High School
take the Towa Tests of Basic Skills (ITBS), a standardized
achievement test used in many schools to measure student perform-
ance as a guide to student placement. We planned to compare 1968
and 1969 ITBS results of our experimental class with those of
comparable children at the school. We discussed this use of

Report No. 1889 Bolt Beranek and Newman Inc.

these tests and other evaluative procedures with the staff at
Muzzey a number of times during the year. Messrs. Santo Marino,
school Principal, David Terry, Assistant Principal, and Robert
Patterson, Guidance Counselor, generously and helpfully consulted
with us and made available the data we requested. The school
volunteered to identify and select a matched control group of
twelve students for comparison of ITBS scores and other measures
with the twelve students in our experimental class.

We understand the limitations of such small samples. We had
planned to use a larger control group, consisting of all seventh
grade children at the same level of mathematical achievement as
the experimental class. We would then have been comparing the
performance of the experimental class with a more reliable con-
trol. In scoring the ITBS, the raw scores are usually converted,
first to grade equivalents, and then to local or national norms.
Because the ITBS is administefed in October, there was not enough
time to get the scores back from the testing service; in order

to get any results, we had to score them by hand. Consequently,
we could not, within the time requirements of this report,
process even the raw scores for the students in the large contrcl
group we had planned to use. We thus had to be satlsfied with
the smaller control group chosen by the school and, as it 1is,

we have available for study, raw scores for 1968 and 1969 for
twenty-four children. The ITBS publisher, Houghton Mifflin
Company, confirmed our assumption that raw scores are as unblased

a measure of comparison as converted scores.

e ity . o T - . .
oo o B ¥ o S e P B, o .
SR o K iand N - sl

The ITBS has eleven independent sections. These are called:
Vocabulary, Reading, Spelling, Capitalization, Punctuation, Usage,
Map Reading, Reading Graphs and Tables, Use of Reference Material,

-~250-

Report No. 1889 Bolt Beranek and Newman Inc.

Arithmetic Concepts, and Arithmetic Problems. We computed
averages for each section for each group for each year. 1In
addition, we tallied the number of questions answered correctly
by each student for each year.

Number of Correct Answers in ITBS

Range for

Individual Students Grand Total
7th Grade (Computer) 166 - 298 2896
(1568) (Control) 214 - 371 3174
8th Grade (Computer) 144 - 305 3010
(1969) (Control) 209 - 382 3180

Although we have noted some trends, we cannot be sure how signif-
icant they are. We can only say that for the twelve children in
the computer class and the twelve children chosen as a matched
control group, some things are true of their raw scores:

(1) The control group has a much higher range of scores and a
much higher grand total, thus suggesting that this group, by
these standards, is not closely matched to the computer class.

(2) Both groups show a widening of the range from 7th to 8th
grade, i.e., the lowest score is lower and the highest score is
higher in the eighth grade.

(3) The changes in the control group are very small: down 5 on
the low side, up 11 on the high, up 6 on the overall total. The
computer class went down 22 on the low side, up 7 on the high,
but up 114 on the total.

=251~

G
gz

R e B e

i TR B

QI g
L e o e

Report No. 1889 Rolt Beranek and Newman Inc.

L frommmm——

(4) In the change in individual totals, the control group was

mixed: 5 student totals went down, 7 went up. The computer group
totals show only two students going down, markedly (-22 and =-25) ;
and predictably from our class experience of their general out- |

§
look. All the other computer student totals went up. ;E

(5) The average change in total score was +0.5 for the control

group and +9.5 for the computer class.

These observations are based on individual test data shown in
Tables I - III on the pages following.

Conclusions drawn from these data are subject to widely varying
interpretation. We can hesitantly say that the computer class
showed markedly positive changes, relative to the control group,
in the sections on Vocabulary, Reading, Use of Reference Material,
Reading Graphs and Tables, and Arithmetic Concepts. On the other
hand, the control group did better than the comguter class in
Capitalization, Punctuation, Map Reading, and Arithmetic Problems.
(The difference between the changes on Arithmetic Problem scores

was not large and is possibly due to the fact that the computer

class did not get much work with standard seventh-grade arithmetic -3
problems during the year.) ‘é

ey
We can confidently say that the achievement test results indicate f

that the computer class childrens' progress in mathematics and

other subjects was not adversely affected by their experience. ?

Sizis S A T b B S e R S SR S

*SUOT4909S 3§93 dUj UT SWa3T JO J2qUNU dULy

w
w

”m..
m
| m 8°06Ge 8 TT 0-ge G- 0¢ K2t 9°gT 6°9T 0°Te g£-2e h-le £-eh 9°Ge uiag STDVUAAY . ;
‘ — € "Ihe g TT 2°12 Q°le K2t 9°f#T 6761 0°2e L he h-Ge G 9g¢ 062 Uil w
c 66e QT 02 [L 02 he 2e 1€ Q¢ 8k 1€ apeay uig _ 51 .
m g6¢e T le Ok €T LT 2e Ge 2€ Ok 2h 92 apean usil m
: w 9¢€e 8 12 2¢ 1T T hT 8T 2T 62 146 - 92 apedayn uig _ IT
% = 012 h 02 6T L 1T 2T T T L2 6 g€ apBaIn Ul))
M e, 6ce 9 02 9T LT €T 9T 2e le 8¢ g2 92 apeaIn U3gQ _ 0T ,
- w hGe 1T 8T 92 0T T Ge 8T €e 2¢ hh €¢ apBaIyn Ulj
g gh2 12 9T ¢ a1 61 €T 9T 97 o€ RE 1€ opeRID Ulg _ -
) Lye 12 a1 119 LT 1T 6T GT LT 119 8¢ g2 aperIp Uzl _
c X
© hge 0T €e €h LT 12 0e Gz . 2 G2 €g 0e apedyn uig _ 9 '
w lL9¢e A 2e Ok a1 QT 2e we - 92 9T h b6c apeayn uil §
w ;M h9e 1T Ge L€ 1T €e LT 6T Co¢e lLe hh le aped) uig _ J “
: O ohe €T 1€ 92 T T 9T "Te 1€ 92 82 - 02 apeayn yil
“ —
O A o] 6T GT 6 2T 9 6 6 9T £e QT apeayn uig _ 9
M 99T L €T 8T 9 0T QT HT LT QT wE 1T apedn Uil
.9l2 T le ok 1T 2e €T Ge 2¢ €2 8h 12 SpEIY Ul1g _ 1 .
] L92 Tt 82 HE at T2 8T 62 1€ L2 g€ Gt apedyn Uil mu 5
Lle 9T he Ge A 92 6T G¢ £ he h 02 opeJa) U3g _ . n% 1
Lhe €T 9T LE LT €T €e 49 49 8T Ge 12 apeJayn Uil ‘
6T2 0T 9T 2e 2T 2T 9T 02 we 2e 6¢& 92 9pPBID U18 _
g9QT o] a1 T 8 €T hT 92 he 9T 1€ 6T apeayn uij
622 8 12 he HT 6T £e LT 8 62 Q¢ o apBeIn U3g _ >)
lLee GT LT 12 €T 8T 9¢ 8T €e €2 12 49 apean U3l -
Go¢ a1 0¢ i €T 2e 2e he 92 8e 86 e SPBID U1g _ 4
582 €T 49 92 T GT he ge 92 62 G €e apeaIyn Uil |
Q 3> oz =7 °® 3 S i g 9 z s daquny juapnis
3 Q o = S5 = ct =h D Qa o [+}] S o [(+] [+}] (g}
2 2 ~Z3 8% B - . Ny . . S,
O wo 3 SO 3 1 = (D —h N S £ w BpCc Ho H = o] Hc
3 O — H3 o O+ D O 3 [oeR o pflal nN N £ I — [0 .0 b] [e]la] oo —
p ~ 2 —eo Teg =3 e 2 e e -
[+ (g} (g} w -3 S o [+}] <
m . y = @ = <
O > o
== w =
,ﬂ t
S s33asnyoessely cuolburxal €ooyds ybiy aorune Kazzny {
mw 6961 42903120 — 3pedy yig 8961 42q0390 — 23apedy yi/ .
) STTINS 2ISvd 40 S1S3L VYMOI — S3403S MYY :
e

SSY12 ¥3LNdW0) m
I 379yl M

[IA i Tox: provided by Enic

s

s - -
v - » . . .
Y i [T o A LA Bk 8 SR 0 Pk = 58 soe g e RN EITRR Siag O-0 @ —— 2ol ® goiry penas, P e d .
T R S —) fag e cn o pgpegy e-oe e el oy . e e — - YT S ot bR g Tt o P B SR g e _ " g P

e . » . - L

*SUOT209S 1§97 9Ug UT SwalT JO J9quUNU SUJTx i

N 0°G9¢ g°eT 86T €-q¢g g TT g8°'12 T°8T g-€e €qe g8°g2 6°Th lL°92 uag i
o G 19z 0°2T heTz LeE€ €-GT g'9T €°22 ke O°we 67l 8'8E 0°8e yg) ~ SHDVHEAY
H €le 0T T2 on 0T T2 9T 92 T2 e n 2€ spedp u3g _
c 182 TT 2e €€ TT 9T 2e 1€ LT g€ 61 1€ spedn Uil
q (]
: = hoe 91 LT of 6 €e 0¢ ge 22 €e hh L2 SDBIH UG _ ...
w ghe 2T T2 1€ 9T 8T 6T he ze Ge GE . Ge spean usl
= GGe G1 8T 2h 2T ce 9T T2 92 ce L€ 2e SDBID U8 _ on
m 922 6 2e Ge 2T LT 9T 0e 2€ L2 62 LT speayn yil)
@ 192 2T 8T 2h 6 ST 8T 0€ 62 LE 6€ 8T opeID Ulg _ , 4
g 992 2T 6T 0€ 6T 9T €e 62 0€ LE 2€ T2 speayn ysl
o .
C 122 9 GT 0¢ T €1 02 02 02 1€ of Ge spedayn yag _ 8 D
m hte q HT L2 1T 0T 62 LT T Ge 19 L2 speapn ysil
% hhe A 8T €€ 0T 9T LT 8T 82 0€ LE ce SpEIY Ulg _ ,
ece 1T LT A9 T 0T cc Ge Ge T2 A9 €e apeayn usil
P
— 6Ge 0T ge 9¢ €T €e 9T 6T 12 T2 Gh L2 spedayn yig _ 9 D
Dw ghe HT 2e €€ 0e LT 8T 8T €2 8T LE ge spean Uyl
2Ge 2T LT 43 LT 2ze GT 2e gT L2 of 0¢ SpEIY Ulg _ . .
lLge €T 8T - 2€ 9T 6T Ge 43 G2 0€ €h HE sprayn Uil i
=
e8¢ 0¢ ge 6 LT 1€ Ge 6E LE Th 29 €¢ apBan uaig _ b0 LN
T.E €2 Le TS he ge Ge T¢ LE Th 8t 9¢ apean ysl 9__
602 0T 8T 6T 8 02 9T €e 2ze LT hE 2e SpEJdH Y18 _ o
1€e A 1 lLe T €T ze QT 6T €T €q ge apeayn uysaj
TTE 9T T2 Th T 62 €2 ge €€ L€ Lt Ge SpEID Ulg _ ,
062 6 62 6h 2T ST le 92 92 G¢ 9¢ 92 spean Uyl
qe 2T 6T 0€ GT Ge ST LT hT he 9¢ 9¢ 3DBIY UG _ . ,
gle €1 Ge HE €1 ce 6T 2e 8T Ge 9t of spedayn yil
2 33 o3 555 e & § £ 8 € 7 = 43qunN 3u3pnas
[+33 O =i S = + =h D [a Ty -1 o S S =] [¢°] [+ V] O
pn 3 |oal & 2 O M o Q. w0 O —le — [o [«1)
o P R of ~0D ~~3 5 O o~ =y et — 0 ~~ —ct —ct ~~ ~~ wde —~—~r
(@)Y wo 3 »T 3 U1 =D =h oo S S0 w o o - o =1 o
[ee) — >3 o o o+ we = MWN»D .I/u\n_ ~ I.'WE 2= © > ow MWI.
00 A —eS o Ted e ® o = < N —a e
—i] (o] (o] 7 | =] o o <
— [+ 1] [{a] > (nd
w e} .
[= o
O w 3
= i
P sjp3asnyosessel ‘uojbuirxal rooyds ybiy sorunp Kazzny
W_ 6961 4340320 — °peJ4y yig 8961 4dG032Q0 — 3pedy yi/ .
0, ST1INS JISVg 40 S1S31 VYMOI — S3IY0IS MYd m
0] :
" dnoyy 10dY1INOD i

IT 378vl o

[WA 1701 providod by ERic:

g A e e Ll e e g

e s e

+9S2yg U99M]aQq S9OUSIIIJTP dY3 9JB 9A0Qe saBueyd
ayJ, °*s3S97 opedad ysg pue Ua) ay3 JoJ Arejeqedss padedoA® 2J49M UOTF03S Yo®I J0] S2Jd00S MBJI a3yl

Bolt Beranek and Newman Inc.

8°0 0 g°ctT 81T 0°ct 8°TT he sSwaTqodd
0T3auY3TIY
9°'T- 80 8T 6T VA g 12 2 12 8k sgdaouo)
0T39aUWYJTIY
9°'T L2 £°G¢ G0t . L €L g°le 64 TRTJI33BN
2ouaJdaJay Jo 3asn
G E- .0 8°TT AR £°61 Al 8ec saiqe], pue I
sydean Butpeay A
QY
0°G 0°f g 12 9°81 8°9T 9 4T 4 Sutpeay den ﬁd
¢ - 0°¢- T°8T 691 £°2¢ 6°6T cet al8esn
9°0- 0°1- g te 0°T¢ ' he 0°cc Wi uoTjenjoundg
€°0 e €°ne g£*ce 0°4¢e L he i uoTgezITR3ITdRD
6°0 02 8°8¢c hle 6°12 T 8k Sutitrads
1°¢ 8°G 6°Th €°2h 8°8¢ G°9¢ 08 Sutpeay
€ 1- 9°0 L 92 962 0°82 0°Ge gt AxeTNQRo0A
dnoun sse|) dnoudy csel) dnoay ssel) EES| .
LC43U0) J33ndwo) Lo43u0) 431ndwo) Lo43u0) J431ndwo) 40 aaquny
sabuey) 6961 4990320 — 3pesn yig 8961 49903120 — 3pedy yi/

sy139snyoessel ‘uojbuiLxa] €looysS ybLH soLrung Kazzny
STTINS 9JISYE 40 SLSIL YMOI — #SNOILJ3S L1S3IL A9 S3IY0IS Mvd 40 AYYWKWNS

ITI 3149Vl

Report No. 1889

g
3
3
i
i
i

.
[PN PR PO N T

poc: 2
-
..

Report No. 1889 Bolt Beranek and Newman Inc.

Student Performance-Level Changes

At the beginning of the school year, the students in the Lexington
junior high schools are placed into one of five tracks, called
phases 1 - 5. This is done independently for each of the four
subject areas - English, Social Studies, Science, Mathematics.
Phase 5 is the most advanced or accelerated group; Phase 1 com-
prises the children with exceptional learning difficulties. The
children 1in our computer class, and those in the control group,
were largely in the middle mathematics track (Phase 3). (Two of
the twelve children in the computer class were at the low end of
Phase 4. We included them because we thought that the presence
of two mathematically more able children might enliven the class.
In point of fact, however, two of the Phase 3 children turned

out to be the best students, and the Phase 4 children were
virtually indistinguishable from the Phase 3 ones in their mathe-

matical work.)

At the end of the year, we recommended a change in placement in
mathematics from Phase 3 to Phase 4 for six of the computer class
children, and no change for the other six. This was an unusual
recommendation: a higher placement for about two out of twelve
students is typical. (In fact our judgment was-that precisely
two out of the twelve children would have been shifted upwards
anyway, in a standard mathematics class.)

In the control group, three students advanced from Phase 3 to
Phase 4 in mathematics placement. (It should be noted that four
of the control group students started the year as Phase 4 math
students.) No one in the computer group was down-phased in any
subject area; one was in the control group. No one remains 1in
Phase 2 in any subject area in either group. The placements are

shown in Tablie IV.

T b —— 4

Bolt BReranek and Newman Inc.

1889

Report No.

ssq0afqns anoJ ayjg JI9A0 ums 99u ayz st (9pead yzg 03 Uil woJJ) os3uryo ayg

*J9pJO 9BUJ UT 30USTIOS

pue ¢soTqBWAY3BN ‘SaTpnag TBIOOS ‘ysTT8ug ut quawsoeld sjussaadad S9T1I8TP anoJ JO SaTaI3S aYJ

T dn
1 dn

0
abuey)

Mm M I I
M M I M M
mMm M M M
mMm MM M M

M ar =r =r = =r =r
™M ar =r =r =r
M =
™M ar =r M

Mm ™M I I

W oh o
ape4s 41

= M M ar ™M M = =
= M ™M ™M ™M ™M ™M ™M
™M M = = ™M ™M ™M Y] M =
™M M = ™M ™M ™M ™M ™M M

€ n
ok oh o
apedn yi/

Loy

dnoag |043u0)

sy3jasnyoesse} cuojburxa €Looyds ybLy aotunp Lazzny

¢id
110

10

N W >~ O O O

=r

™M
O L L L O O ©O

c
90

juspnis

dn

i

dn

M O

dn

(=

dn

dn

dn

dn

m o =~ e~

2 dn

abuey)

INIW3JIVY1d 3ISVHd

AT 3718Vl

Wb ohon
Ehbn
cegege
Ehhn
EneEE
hohohon
ceegce
€neEc
€€ h
ceegce
Ehbn
hhoh €
apeJs yig

sse|) 433ndwo)

oWl AN
€& 1T
ceege 0T
S S 6
S S S 8
hhohoh L
ceece 9
O S S
2 &y i
L S S €
LS S O 2
B € €E T
3peay ul/ *ON 3u3pn3s

257 s

P T

E

\
|

O
1C
- LEIEETER |

¢

Report No. 1889 Bolt Beranek and Newman Inc.

At the beginning of the year, the control group had a somewhat
higher placement profile than the computer class, over. all
subject areas (six more Phase 4 placements, and five fewer

Phase 3 placements). At the end of the year, the two profiles
were more alike (the control group had three more Phase I place-
ments and three fewer Phase 3 placements).

It should again be noted that, since we ourselves made the
recommendations for mathematics placement, this is a biased
measure.

In early November 1969, we returned to Muzzey Junior High School
to talk with the current mathematics teachers of the twelve
children who had been in the computer class. We asked how our
placement recommendations, all of which had been accepted by the
school, were working out. Our students were now divided among
three matl.ematics teachers. Each of the three teachers affirmed
that the former computer class students in her class were appro-
priately placed at present. Two of the new Phase i students
were among those at the top of their class. They were described
as "among the brightest and most enthusiastic, asking lots of
questions and volunteering lots of information." The other new
Phase U's were comfortably holding their own. Similarly, the
children whose phase placement was unchanged were deemed to be

working at the proper level of challenge.

Thus far, our judgment that six students would be capable of
doing more difficult mathematics than before (in part as a result
of their work with ".0GO) appears to be holding up. That is, in
personal terms, the most important result of the experiment.

Report No. 1889 Bolt Beranek and Newman Inc.

Comments of Evaluators

The following mathematics and science educators independently
monitored and evaluated the research throughout the fifteen-month
period.

Max Beberman Professor of Mathematics,
University of Illinois
Director, University of Illinois Committee on
School Mathematics

Robert B. Davis Professor of Mathematics
Syracuse University, and Cornell University
Director, The Madison Project

Andrew Gleason Professor of Mathematics
Harvard University
Director, Cambridge Conference on School
Mathematics

Robert Karplus Professor of Physics
University of California (Berkeley)
Director, Science Curriculum Improvement Study

Each of these men made several visits (ranging from three to
seven) during the school year to observe the progress of the
classroom teaching. They attended two meetings with the project
staff just prior to and just after the school year (August 1968
and August 1969), the first one to plan the teaching and evalua-
tion, the last one to discuss the work done during the year.

None of these men were committed to the view of the project staff
that programming could make a fundamental corrtribution to mathe-
matics education. Each man had some familiarity with the ways
that computers and programming were already being used in mathe-
matics instruction, and was genuinely interested in our new

approach.

Report No. 1889 Bolt Peranek and Newman Inc.

Their individual methods of observation and evaluation were
different. One of them (Karplus) gave the students his own
problems, and on one occasion, his own test. Another (Davis)
felt that he had to become personally familiar with the details
of LOGO programming and the use of LOGO in teaching. He arranged

to get remote access to our computer from his offices at Syracuse

and Cornell. Beberman took advantage of his access to local
experts on computers and education at Urbana (members of the
PLATO instructional project) in planning for his visits to our
project. Gleason tested the progress of the class by teaching
it himself on occasion. To obtain a further understanding of
the problems of designing and using mathematical material in the
context of LOGO, he developed some of his own LOGO programs.

Karplus is a physicist; the other three evaluators are mathemati-
cians. We thought it appropriate to have a person whose main
concern about mathematics education was 1ts relation to scilence,

and Karplus represented that interest.

At the end of the year, the evaluators prepared statements
describing their individual observations and judgments about the
project. These are reproduced on the next pages. We begin with
Karplus' statement (actually excerpts from several reports that
he prepared following each of his four visits during the year).
The letter reports of the three mathematicians follow this one.

~260-

" Report No. 1889 Bolt Beranek and Newman Inc.

Letter Reports from Professor Robert Karplus

1. September 18-22, 1968

"Marjorie Bloom promises to be an outstanding teacher for
the group. Her knowledge of mathematics and her creative
approach to teaching are a rare combination. It is clear that
she has many ideas, but that she will be able to use only a few.
To keep a record of her work, I recommend that she and one
observer write a diary-like report of the procedures and
children's reactions after each class. This report should in-
clude a brief description of untried alternatives. Even though
report writing is burdensome, we have found it to be an essential
part of a curriculum study. Human memory is too fallible and
too much subject to reinterpretation with the benefit of hindsight.

"Open-ended activities in which a child writes series of
instructions for the computer seem to lend themselves quite easily
to analysis with regard to the child's level of sophistication.

I explained this in connection with the "coded message" activity.
I suggest that each child hand in at least onre such paper every
other week and that you examine it for length, directness and
indirectness of the steps in the procedure, etc.

"Some of the operations in LOGO may present logical problems
to the children (e.g., class inclusion, transitivity, relation-
ships and their inverses, necessity and sufficiency). Such items
should receive special mention in the diary-reports and you should
consider modifications in LOGO to make them more clear. You may,
for instance, ask the children for the kind of operation they
would like to have in LOGO. Their suggestions will indicate their
need for redundancy (equivalent basic operations) and/or a differ-
ent feeling of confidence in basic operations compared to opera-
tions which they themselves construct therefrom."

2. December U4-6, 1968

"A great deal of progress was observable during my second
class visits on December 4-6, 1968. Six terminals were in opera-
tion and the children were skillful in handling them. They dialed
to the computer, adjusted the acoustic couplers, and generally
conducted themselves in a professional manner. They also used
the keyboards with fair accuracy and confildence. In other words,
the children's practice in using the terminals is certainly
evident in their behavior.

~261~

A

Report No. 1889 Bolt Beranek and Newman Inc.

"Tt was furthermore clear that most of the children can use
the LOGO commands to write simple programs, edit them, and use
them. Programs with recursion were still a novelty at the time
of my visit, but some of the children were catching on to the
properties of such a procedure, even though its power was not
evident. They enjoyed experimenting with the procedures, finding
bugs in programs largely through trial-and-error, and watching
the macthe operate without their frequent intervention.

"It’might be valuable at this point to help the children
find some activities that are not ad hoc exercises in LOGO, but
actually make use of the program for other purposes. Processing
data obtained in science class is one possibility, perhaps gener-
ating a forecast of the weekday on which each child's birthday
comes for the next twenty years, etc. In other words, the chil-
dren should begin to think of LOGO as a tool for other purposes,
rather than as a self-sufficient and self-contained activity.
This aspect can be developed alongside the work on developing
programs which are logically more complex."

3. March 27-28, 1969

"T estimate that the children have not moved ahead of their
level during my December visit either in skill of teletype opera-
tion or in the intellectual level of their program operation. In
other words, they are on a plateau as far as their performance is
concerned. This plateau is probably related to their general
intellectual development and will not be easily surpassed.

"The evidence to support my assertion comes from my observa-
tions in the class. The children's principal activities were to
de-bug programs which they had typed in accordance with general
suggestions or outlines from their teacher. The debugging was
still largely a trial-and-error procedure, with very little effort
to use a testing strategy for locating the source of trouble. In
other words, the binary narrowing-down procedure which was the
content of their number-guessing program was not seen as a tool
that could be applied in the debugging of programs.

"To help me describe the children's level of reasoning, I
asked each one to answer the "Islands Puzzle," a logic quiz.
Only one child reasoned that plane connections between A and B,
and between A and C, imply a connection between B and C. One of
the children based his answers on the islands dlagram, seven
mostly repeated the information given, arid three drew at least
partial inferences from the data. This is about par for Jjunior
high school students.

-262-

Report No. 1889 Bolt Beranek and Newman Inc.

"T should like now to go into a couple of background matters.

It is useful to distinguish the children's attitude to the program

as one of (a) rejection, (b) compliance, (c) identification, or
(d) internalization of values. Rejection is self-explanatory;
compliance means participation out of compulsion or lack of
alternatives; identification means a desire to perform well
because of a general appeal of the program, its teacher, or some
other connected matter; internalization means an acceptance of
the program because of its usefulness to the individual as a
tool, for self-expression, etc.

"In my experience, complete internalization of values of any
sort is extremely rare in elementary school and probably also in
junior high school. Nevertheless, my colleagues and I have the
feeling that children should accept the program activities in the
same spirit in which we think of them. Perhaps what goes on in
your Muzzey computer club (though not in your computer class)
reflects internalization.

"Tdentification is the most positive attitude that can be
hoped for on any large scale. Whether it is necessary, however,
or whether compliant performance results in satisfactory achieve-
ment, I don't really know. At present, I would place the Muzzey
class between compliance and identification. I can't be more
precise, because of variation from child to child and actilvity to
activity. You should really ask yourself how much the attitude
factor means to you in comparison with achlevement, and whether
you are satisfied with the present condifions.

"When students have internalized the teacher's values
(graduate school level?), they presumably are eager for advice,
leadership, and information from him. When students hover
between compliance and identification, this is not the case. A
great deal of input from the teacher is likely to result in more
compliance or outright rejection; inadequate input from the
teacher will lead to wasted time, aimless play, or doing nothing.
In other words, the teacher's meves have to be planned and timed
carefully, if possible in an individualized fashion. I doubt
that this is really possible during the current exploratory
phase of your project, but you should make the effort. The
children should have enough autonomy so they can fest the new
ideas in their own ways."

~263-

UM SRR T T ST T T e T

Report No. 1889 Bolt Beranek and Newman Inc.

4, May 20-21, 1969

"I was most impressed by the enthusiasm, interest, and
obvious competence of the Muzzey computer club members, who raced
to the terminals for their turns. Many had designed programs
previously (perhaps left from the conference during the prior
week) and could hardly wait to try out their ideas.

"The regular computer class was very much more interested
and active than it had been during my last visit. Half of the
children worked at the terminals (the others were elsewhere in
classroom discussion) on various projects. They-had been intro-
duced to the concept of generating problems of variable form by
using the random number generator in different ways. All the
children were quite comfortable in using the random number
generator, but some followed the assignment outline quite closely
while others were more innovative and still others were occupied
with programs unrelated to "variable form". Most of them
appeared to be able to control the random numbers adequately.
That 1s, they gave it a particular name when the same random
number had to be re-used several times, and they knew that call-
ing for /RANDOM/ would generate a new number."

Summary Report of Professor Max Beberman

"The principal impression I have formed from last year's
LOGO experiment is that you are developlng a genulnely new ap-
proach to mathematics. The ability to construct functions in
order to do a given job is a mathematical task of first importance
but which is given almost no attention in traditional or new
programs. It is important that we see how far into the secondary
school we can push this approach. Can we reorganize secondary
school mathematics through this approach? Will doing so result
in more efficient teaching and learning?

"I gained this impression not from your original proposal
[although you may have had this in mind all the time] but through
talking with you, watching the children at work, and writing some
LOGO programs myself.

"Another characteristic of the experiment which is unique is
that children have an immediate feedback on their efforts. They
do not need to wait for a teacher to give them the "right answer"

in order to check their work. Moreover, there is a real payoff

-26L4-~

Report'No. 1889 Bolt Beranek and Newman Inc.

in doing things correctly -- the programs work. In most mathe-
matics classes, students couldn't care less about getting the
right answer except as 1t influences thelr grades.

"It is difficult to estimate, at this point, what will be
the results of the mathematical power acquired by these students.
Will it enable them to move through "standard" courses with less
difficulty? Will standard courses appear to be trivial?

"As I mentioned on several of my visits, you will have to
be creative in finding ways of helping the experimental children
attain the standard goals. Rack your brains to find LQOGO ways
to de this. But 1t must be done as long as you use public school
children in your experiments.

"I am looking forward eagerly to the next steps."

Summary Report of Professor Robert Davis

"May I ‘comment on the Lexington and Newton uses of LOGO by ik
beginning with a discussion of our own uses of LOGO at Cornell .
University and at Syracuse University. As you know, after we
began watching LOGO in use at Lexington, Massachusetts, we were
unable to resist some very informal trials of our own. Our trials
were in no sense an "experiment," they were just informal explor-
atory trials intended to give us a feeling for the parameters
involved, for possible value, and possible problems.

"By discussing the reasons for our own interest I can provide *ﬁ
some background for discussilng the work at Newton and Lexington. ,

"We had eight reasons; four of them relate to what happens
in schools and in classrooms:

1.) We were looking for ways to get the child's attention. gg
Expecially in some urban classrooms, this is surprisingly o
hard to do. Both calculators and computers help, and this | 4
is not unimportant. Our trials convince us of their value ‘
in this regard; I have just conferred with Edith Biggs, one

of Her Majesty's Inspectors 1in England, and Edith reports

the same effect there.

If you look at the plight of urban classrooms, you will see
what I mean.

Report No. 1889 | Bolt Beranek and Newman Inc.

2.) We wanted to expiore the possibility of allowing
children to teach other children. Our trials convinced us
That LOGO lends itself readilly to such useage. (This, too,

can improve the whole climate 1n a school.)

3.) We try to make some use of a "project" method for
letting children learn things. We've tried many things:
ideas we got from Edith Biggs, "ecardboard carpentry" from
E.D.C., etc. Our trials with LOGO make it seem likely that
OG0 can provide some worthwhile "projects" for children to
develop themselves (what T call "mini-theses").

4.) We've been trying to promote individualization, to make
it possible for a teacher to work with one child at a time
(or with a small group of 2 or 3 children at a time). LOGO
helps, for two reasons: (a) because of its "attention
holding" ability, it keeps other children purposefully
occupied while the teacher is busy in a different part of
the room; and (b) because it has a "quasl - CAI" aspect, it
makes it easier for children to work more-or-less on their
own. (This rather interesting exploratory "gquasi - CAI"
arithmetic is very different from straightforward -- and
dull —- "programmed-instruction” CAI.)

"One reason relates to our work as a "ourriculum-innovation"

project:

5.) School procedures and school curricula are frozen soO
hard that most reasonable efforts fail to yield any change
at all. Even worse, there is what Dick Suchman calls the
"homeostatic propensity" of curriculum and of school practice
-- if you do, miraculously, make some sort of change, before
long your resources will usually be exhausted, and both
practice and curriculum will return to the status quo ante.
We are looking to LOGO to be a powerful eneough force for
change that 1t can create change in the first place, and
that, in the second place, the new directions will be
pursued rather than abandoned.

One could say much about this: it won't automatically happen
even from LOGO -- one has to plan for it carefully. Further-
more, if these '"new directions" prove to be undesirable,
their irreversability suddenly becomes a liability rather
than an asset. Many uses of computers do indeed look as 1f
they could become 1igbilities. LOGO looks to be an asset,
and an important one.

-266-

Report No. 1889 Bolt Beranek and Newman Inc.

"Finally, three reasons relate to the nature of mathematics
(or school learning of mathematics):

6.) We want both school children and school teachers to
apprehend mathematics as an active thing that you do. It is
not merely a lifeless collection of facts and rote procedures.
Math 1s something you think about, you speculate about, you
work at. LOGO helps math to appear in this "active" 1light

as "something you do" <=~ really, as an unlimited collection
of things that you can do. Let me emphasize that this view
of mathematics is just as important for teachers as it is

for children.

7.) We wanted the computer to give us access to problems
that are more interesting, but which would be too difficult
without a computer. Paul Ward and Dan Aneshansley (at
Cornell) have developed some lovely work on population
growth. Their simplest model uses essentially only addition;
more sophisticated models use Fibonacci series, differential
equations, etc. Using a computer puts all of this within
reach of average ninth graders, and much of it within reach
of 5th and 6th graders (very possibly even younger children
could work on it profitably if we got our presentation,
introduction and motivation worked out smoothly enough).

Without a computer, these problems would be too tedious to be
viable within the school program.

3.) This reason is the most subtle; you would have to
observe Tth, 8th, and 9th grade classrooms to see what it
really means. I have watched a teacher devote 40 minutes
to problems, all of the same type, as follows:

"How shall we write the sum of twice A and B?"
(Ans: 2A + B)
This was a wildly dull lesson; an unnecessary one; and an
unproductive one. This teacher complained because she never
had enough time to teach all the math that people expected
her to teach.

A second example: Asked to "solve a + a = 10 for a,"
a child responded "For which a?"

Now these examples are a vague suggestion of what seems to
be an important problem. Obviously, the problem has complex
roots. Some of its roots lie in the theory that the teacher

-267-

Repert No. 1889 - Bolt Beranek and Newman Inc.

is supposed to tell the student what to do, and how to do
it. But much of the difficulty probably lies here: the
thing being discussed is the written language of mathematics
as it 1s usually handled in 9th grade algebra. In order to
discuss this, a certain ill-defined and wildly inelegant
language is beilng used. In fact, most of the content of
traditional algebra courses consists precisely in learning
this language. It is a poor language, and a waste of time
to learn. We no longer teach the historically earlier forms
of this language ("If the ten-fold multiple of a quantity

be diminished by one half of its cube, the result is to 24
as the square of 3 is to its third power"). We need to

stop teaching the 1969 version, which doesn't justify itself.

This requires something else to be put in its place. The
Carbondale group (Exner, et al.) are experimenting with
formal mathematical logic. You are experimenting with LOGO.
(We have been experimenting with the use of as little
language as possible, and that little made up mostly by the
children themselves.) Obviously, I hope we all win. But
we, too, see this use of LOGO as potentially valuable.

"So much for our informal explorations with LOGO. (We have
worked with teachers of grades K - 9, with prospective teachers,
and with children from age 3 years to age 21 years, or so.)

"I should add that I was present at the Joint Computer
Conference in Boston last year when Sharon Kaufman, M.D., a
psychiatrist from U.C.L.A., observed your Newton and Lexington
children at work and described the activity from her (very
valuable) point of view: in terms of children learning from
errors instead of being discouraged by them, instead of being
driven into uncontrollable frustration by them, etc. She spoke
in terms of frustration tolerance, perseverance, flexibility,
etc, == and expressed the opinion that these tralts, perhaps
more than any others, determine whether one leads a fruitful life
or becomes a soclal reject. I am impressed with her remarks,
they seem consistent with our experience, but I can describe
things better from my usual frame of reference 1in relation to
school mathematics.

"Let me now comment on the work at Lexington and Newton.
i) Obviously, I like it =-- in fact, I was deeply impressed

by it == or I and my colleagues at Cornell would not have
gone to great lengths to explore it ourselves.

-268-

Report No. 1889 Bolt Beranek and Newman Inc.

ii1) I am impressed by such facts as these: the children
showed normal gains on the Iowa Tests even though this 1is
not what they studied in grade seven: LOGO was their
(essentially entlre) math program for seventh grade, yet
they showed normal growth on the (essentially obsolete)

Iowa tests. Also, you had 12 essentially randomly-selected
middle tra~k (or, as they say in Lexington, "phase")
students. For grade 8, none has dropped below his expected
track, but 6 stude«1ts -- one-half of the class -~ have moved
up to a "higher," wetter," or "more difficult" track. This
is very important, because a major concern in education
today is the fact that once you consign a child to a lower
track, you have put him there fcor the rest of his life.

Your results in this regard are both very unusual and
potentially very important.

"Let me remark upon Lexington as an "experiment" in relation
to the conventional wisdom of educational research. We both know
that it was not an "experiment" in the conventional sense. You
received excellent advice, and deliberately chose a different
route. I think that was wise.

"But what (if any) systematic or generalizable knowledge
could be gained from future similar explorations? Some of my
friends say: none -- learning ecology doesn't lend itself to
generalizable data any better than painting or music. They may
be right. Nonetheless, several things seemed clear:

1) I observed 3 different teachers working with the T7th
graders. Teachers style, personality, approach to mathe-
ms.cics and approach to the children were so different that
they weren't even in the same ball-park. You didn't have
one experiment, you had three (not to mention interaction
effects among the three different treatmeats). ‘

1i) While you had less variation in classroom format, time
scheduling, etc., the same potential for variation was there.

"It is almost as if there were no such thing as "teaching
LOGO to seventh graders," no more than there i1s such a thing as
"playing the piano." My six-year-old daughter practicing, one
hand at a time, is orie thing; her flve-year-old brother banging
with both hands is something else (and more musically rewarding
for the llstener). Glen Gould's Bach is different from Wanda
Landowska's (she played pilano, too, sometimes!) Bach 1s different
from Chopin, and so on. There is so much potential (and actual)
variability that we need a new approach. I think it not

-269~

- B ¢ LA
- e P . . 14 4 - —
9 v M ﬁ = a - o ” " wp ey s Socifazy gEmT st 2 S Rnama e S R N N (s B

Report No. 1889 Bolt Beranek and Newman Inc.

inconcelvable that art criticism may offer us better paradigms
than seventeenth century science does, or than studies of the
effectiveness of different fertilizers.

"As in nearly everything human, how you do it is as important
as what you do. The message is in fact inseparable from the
medium,

"I can't imagine that anybody doubts that LOGO is a good
thing. Bach is a good thing. Beethoven is a goecd thing. The
Cauchy - Riemann equations are a good thing. LOGO is a good
thing.

"And, unfortunately, we can't cop out and say -- well, it's

all a matter of cost effectiveness. Building Edsels is a matter
of cost effectiveness; education isn't."”

Summary Report of Professor Andrew M. Gleason

"My impressions of the LOGO project: I visited %he classes
on three occasions last year.

"The first time I was not particularly impressed. It seemed
that progress was slow and the children didn't show much in the
way of disciplined interest.

"By the second visit interest had improved considerably.
On that occasion I led a discussion of possible algorithms for
multiplication. The children had done a little with this before-
hand and they were clearly involved in finding ways to do it
better. I understand that subsequently they did a good bit of
work improving their algorithms and doing division.

"The last time I came there were some really impressive
things golng on. The children had learned to make a random
sentence generator and some were trying to improve theirs. Aside
from the higher level of programming sophistication involved,
there 1s a clear opening into an entirely different area of
learning. To program the machine to make up English sentences
requires that they look critically at what distinguishes an
English sentence from a string of words. This is what grammar
ls all about. Approaching grammar through a computer context,
the children are much more likely to see it as relevant to the
important problem of communication, than they are in an English

270~

Report No. 1889 Bolt Beranek and Newman Inc.

class where the emphasils is more likely to be on whether a
sentence 1s "good" English than whether it carries the message
it intends.

] "The same day there was a girl who was programming a French
§ verb conjugator. Another example of transfer to other areas.

; Who would have thought that your project would be reinforcing
some girl's knowledge of French verbs?

"It seems to me that these carryovers are the really impor-
tant contribution of the program. One can hardly expect that
each child should be interested in school work in all areas. We
shall be very successful indeed in our schools if we can get
each child to think seriously about one topic. The computer, as
expected, does seem to challenge students to make a real irtel-
lectual effort. At the same time its versatility offers a much
larger range of attractive problems than is available under
conventional programs. These problems are self-adapting; a
child can choose his own problem and push it as far as he
pleases, there being almost no 1limit to the scope of computer ;
applicability. T

"I think computers in the classroom will continue to open
new vistas in education and increase the probability that children
will learn the one fundamental lesson, that serious thought can
pay off in increased insight into almost any problem."

Conclusions of Projgct Staff

Mathematical Value

The main result of the research and teaching has been to uncover ;
an abundance of ideas for teaching, only a fraction of which had |
been anticipateq at the time we started the project. The experi- ‘
ment showed also that LOGO can be used to express a wide %

diversity in teaching styles and modes of presentation., :

-271-

Report No. 1889 Bolt Beranek and Newman Inc.

Side Effects

There are indications that the childrens' work with LOGO directly ;
contributed other educational and behavioral benefits. There
was evident enhancement in reading rates of some second and third @
grade children. Administrators and teachers in the junior high

sgsmas

school stated that behavioral changes in certain of the children
(such as a higher degree of self-confildence, more positive social
attitudes, broadening of intellectual interests, etc.) were
attributable to their experience in the course.

Feasibility

We are not sure abtout these extra-mathematical benefits. But,
we are sure of the following two points:

Tt is feasible to teach LOGO to "average" seventh-grade, .
and younger, children. ’

It is feasible, also, to develop and effectively teach
a mathematics curriculum using LOGO as the conceptual

and operational framework.

Problems

The day-to-day work during last year consisted in testing very
specific ideas intended to achieve these goals. As part of this
work, we identified conceptual gaps in the children, some of
which were surprising in thelr obviousness once We had recognized
them. Typical examples of such missing concepts are:

~272=~

Report No. 1889 Bolt Beranek and Newman Inc.

the absence of any idea like 'syntactic form," despite the
time spent on formal manipulation in the mathematics class-
room and on analyzing the structure of sentences in language
classrooms;

the rareness of the idea of "counter-example" and the
complete absence of any systematic habits of looking for
counter<=examples to test ideas;

an inability to go into a "formal mode" of thinking, i.e.,
following quite literally a set of instructions or
definitions;

the absence of an idea of a planning phase of work on a
problem.

Once these issues are identified, it 1is relatively easy to
develop appropriate teaching materials, modes of presentation,
well-sequenced units, and projects. This is where further work
needs to go.

~273=~

Report No. 1889 Bolt Beranek and Newman Inc.

APPENDIX: A Description of the LOGO Language and System

1. The LOGO Language

1.1 Things, Operations, Commands, and Names

There are two kinds of LOGO things —-- WORDS and SENTENCES.

WORDS

Examples of LOGO WORDS:

"SUN" (an English word)
"3gn (a numerical word)
"PRESIT!I220W*2" (a nonsense word)

LR (a special word called the EMPTY word)

SENTENCES

A ILOGO SENTENCE is a series of LOGO words, separated by
spaces. (LOGO words do not contain spaces.)

Examples:

"GOOD MORNING"

"X + Y = 24,5"

"FLOOCH HUM BUZZ CHORB"

OPERATIONS

LLOGO has several elementary (i.e., built-in) OPERATIONS for
manipulating LOGO things. A LOGO operation takes a fixed
number of things (possibly none) as INPUTS and produces a

new thing as an OUTPUT. Examples of some built-in operations-
FIRST, LAST, BUTFIRST, BUTLAST, WORD and SENTENCE-follow.

A

Report No. 1889 Bolt Beranek and Newman Inc.

FIRST

The operation FIRST takes one input, either a word or a
sentence. Its output is the first letter (if the input is
a word), or the first word (if the input is a sentence).
Thus,

FIRST OF "CAT" is "C"

and

FIRST OF "DO RE MI" is "DO",

LAST, BUTFIRST, and BUTLAST

These operations are similar to FIRST, as the following
examples show.

Name of Operation Input Output
LAST "CAT" n
BUTFIRST "CAT" "AT"
BUTLAST "CAT" "CA"
LAST "DO RE MI" N
BUTFIRST "DO RE MI" "RE MI"
BUTLAST "DO RE MI" "DO RE"

WORD and SENTENCE

These operations take two inputs. Their output is the
concatenation of their inputs. The inputs of WORD must be
LOGO words, not sentences. The output of WORD is a LOGO
word. Thus, WORD OF "DO'" AND "RE" is "DORE". The inputs
of SENTENCE can be LOGO words or LOGO sentences. The
output is a LOGO sentence. Thus,

~-275=-

BT et At e

Report No. 1889 Bolt Beranek and Newman Inc.

Name of Operation Inputs Output

WORD "mIc" "TACM "TICTAC"
SENTENCE "TIC™ "TACY "TIC TAC"
SENTENCE "PUT ME" "HERE" "PUT ME HERE"
WORD "pPUT ME" "HERE" (Error Message)

The entire set of elementary, i.e., built-in, operations 1s
described in Section 1.7.

CHAINING

Operations can be chained together to form composite
operations. Examples:

Chained Operation Qutput
FIRST OF BUTFIRST OF "CAT" "TAY
LAST OF FIRST OF "DO RE MI" no"
WORD OF BUTLAST OF "CAT" AND LAST OF "X9" "cao"
SENTEMCE OF WORD OF "A" AND "B" AND "C" "AB C"
WORD OF "Z" AND SUM OF "1" AND "2" ."z3"
COMMANDS

1,0OGO has several built-in COMMANDS. Commands have inputs
but, unlike operations, do not make a new LOGO thing, i.e.,
they have no output. They are used for their external
effects or for their side effects.

PRINT is a built-in LOGO command which has one input.

Though it has no output, i1t has the tangible effect of
causing its input to be printed out by the teletype, Thus,

-276-

Report No. 1889 Bolt Beranek and Newman Inc.

Command Input Printout
PRINT "CcAT" CAT
PRINT LAST OF "BOXY X

Other built-in LOGO commands include MAKE which is used to
give names to LOGO things, and TO which is used to define
new LOGO operations and commands. These are described in

later paragraphs of this section.

LITERALS

Tn the examples above, some words and sentences are enclosed

in quotation marks. This means that we are citing them
1literally, to refer to themselves rather than to other LOGO

things. But we also can use LOGO things as names for other
LOGO things.

NAMES

OGO things can have NAMES. Any LOGO thing (except the
empty word) can be used as a name for any other LOGO thing.
Assume that we have assigned "JANE" as the name of the thing
"GIRL". We now can use "JANE" in two ways - either as a
thing (itself) or as a nameé (for the thing "GIRL").

To indicate to LOGO that we want to useé something as a name
(in order to refer to the thing that it names), we have a
LOGO operation - THING, whose input is a LOGO thing and
whose output is the LOGO thing named by the input. Thus,

with the example‘above

277~

s -

Report No. 1889 Bolt Beranek and Newman Inc.

Command Printout
PRINT "JANE" JANE
PRINT THING OF "JANE" GIRL

A shorthand way of writing THING OF "ANYTHING" is /ANYTHING/.
Thus, the effect of the command PRINT /JANE/ is to cause
the teletype to print GIRL.

NAMING

The LOGO commarid MAKE is used to construct a LOGO THING and
give it a NAME. The following example shows how a student
could use it to assign "JANE" as the name of "GIRL".
MAKE
NAME: "JANE"
THING: "GIRL"
The student's typing is underscored to distinguish it from

LOGO's responses.

More typically, one names a more complex construction, as
follows:
MAKE

NAME: "JIM"
THING: LAST OF BUTLAST OF /JANE/

In this instance, with /JANE/ assigned as above to "GIRL",
/JIM/ would name the THING "R" (since BUTLAST of /JANE/ is
"GIR" and LAST of "GIR" is "R").

Constructing a New Operation

Suppose we want to define an operation which has one input and

278

Report No. 1889 .Bolt Beranek and Newmarn Inc.

whose output is the second letter of its input (if the input is

a word) or the second word (if the input is a sentence). We will
call this new operation SECOND. (We can choose any word not
already being used by LOGO as a procedure name.) The procedure
for performing SECOND is described to LOGO as follows.

TO SECOND /ANYTHING/
1 OUTPUT FIRST OF BUTFIRST OF /ANYTHING/
END

TO is a command that signals the start of a procedure defirition.

The name of the procedure we are defining is SECOND. Its input
is /ANYTHING/, which names the LOGO thing we will operate upon.

It has a single instruction line (in general there are several),
labeled 1. The instruction is: OUTPUT the thing expressed by
the chained operation FIRST OF BUTFIRST OF the word (or sentence)
named by /ANYTHING/. END demarcates the end of the procedure
definition.

SECOND is now the procedure name for a procedure which defines a
new operation. To perform this new, user-defined (as distinct
from elementary or built-in) operation, we can give LOGO the
command

PRINT SECOND OF "MAN".
This tells LOGO to perform the operation SECOND on the input
"MAN", i.e., that /ANYTHING/ is now "MAN". ©LOGO will perform
the instructions in the procedure. It will thus output "A" to
the PRINT command which will cause the teletype to print A.

-279~

Report No. 1889 Bolt Beranek and Newman Inc.

1.2 Instructions

The basic unit of a LOGO INSTRUCTION is a LOGO EXPRESSION. An
expression has two parts: (1) a procedure name or the name of an
elementary (built-in) command or operation, followed hy (2) a

list of the associated inputs. Some examples of expressions are:

(a) WORD OF "CAT" AND "DOG"

WORD is a built-in LOGO operation that requires two inputs,
in this case "CAT" and "DOG". The output of this expression
is the word "CATDOG".

(b) SECOND OF "APPLE PIE SOUFFLE"

SECOND is a procedure defined by the user which requires one
input, in this case, "APPLE PIE SOUFFLE". Assuming that the
procedure is defined as in the previous sectlion, the output
of the expression would be "PIE".

(¢) TIME

TIME is a built-in operation that requires no inputs. The
output of thils expression is the current time, for example,
"10:34 AMT,

The inpufs in expressions may be LOGO NAMES as well as LITERALS.

(d) PFIRST OF /CHILDREN/

FIRST is a built-in operation that requires one input. The
input here is not "CHILDREN" but rather the thing that
"CHILDREN" names. Thus, if "CHILDREN" is the name for the
LOGO sentence "BOYS AND GIRLS", the output of the expression
is "BOYS".

~-280-

Report No. 1889 Bolt Beranek and Newman Inc.

The inputs in expressions may themselves be expressions.

(e) FIRST OF BUTFIRST OF "ABCD"

Here the input of the operation FIRST is the output of the
expression BUTFIRST OF "ABCD", that is "BCD". So the output
of the whole expression is the same as the output of FIRST
OF "BCD", that is "B",.

Commands are expressions. For example,

(f) PRINT OF "ABC"
This expression has no output but it causes ABC to be

printed by the teletype.

(g) PRINT OF FIRST OF "ABC"
Ir this expression, PRINT has, as its input, the output of
FIRST OF "ABC", that is "A". The effect is to cause A to

be printed by the teletype.

On the other hand, the form
(h) FIRST OF PRINT OF "ABC"
is not a legal expression because FIRST requires an input

but the expression PRINT OF "ABC" has no output.

In writing expressions, the words OF and AND are optional. The
expressions PRINT WORD "CAT" "DOG", PRINT OF WORD OF "CAT" AND
"DOG", and PRINT WORD OF "CAT" AND "DOG" all have the same

1 meaning.

-281-

Report No. 1889 Bolt Beranek and Newman Inc.

1.3 Procedures

Several LOGO instructions can be put together to form a PROCEDURE.
This is accomplished using the instruction TO. (The student's
typing is underscored to distinguish it from the computer's.)

+<TO GREET /NAME/
>10 PRINT SENTENCE OF "HELLO,'" AND /NAME/
>2@ PRINT "I HOPE YOU'RE WELL."
: >END
: GREET DEFINED

+GREET "DICK"
HELLO, DICK
I HOPE YOU'RE WELL.

The instruction in first line of the example, TO GREET /NAME/
does several things. The word TO tells the computer that we are
about to define a procedure. The next word GREET is the name of
the procedure. Following this is the list of input names for
the procedure, in this case only one. (If we had wanted a two-
input procedure, like WORD, the first line might have been TO
GREET /WHO/ AND /WHERE/. Any number of inputs is permitted
including none.) The names appearing in the input list are used
in subsequent instructions to refer to the associated inputs.

After the TO instruction (also called the title line of the
procedure), the computer types > at the beginning of each lirne

to indicate that it 1s ready for the type-in of the next 1line of
the procedure being defined. At this point any line typed in
preceded by a number (between 1 and 999999 inclusive), as lines

12 and 2¢ in GREET, will be made part of the procedure definition.
These instructions will subsequently be performed in the nhumeri-
cal sequence thus indicated. The instructions are not performed

-282-

Report No. 1889 Bolt Beranek and Newman Inc.

immediately as they are written - they are merely stored as part
of the definition. They can be performed later when the proce-
dure definition has been completed.

Finally, the command END (which has no inputs) completes the
definition of the procedure. The computer types GREET DEFINED.
Now the computer begins lines with an <« indicating that 1t is
ready to perform an instruction (possibly a procedure).

GREET may now be used as a LOGO command. The expression GREET
"DICK" (or GREET OF "DICK") causes the computer to pair the
input, "DICK" with the name in the title line of GREET, /NAME/,
and then to carry out the igstructions in the body of the
procedure GREET in the numefical order of their line numbers.

There are two ways to change the numerical order of execution

of the instructions in a procedure. The first is by the command
GO TO LINE expression

where the value of expression must be a line number. (Although

the name of this command is a sentence, GO TO LINE, it 1s a
single entity of the same kind as commands whose names are
single words.) The effect of this command is shown in the
following example.

«TO SHOWGOTOLINE /X/
sT@ GO TO LINE /X/
>2f PRINT "1V

>3f PRINT '2"

s4g PRINT "3"

s5F PRINT "4"

>END

SHOWGOTOLINE DEFINED
SSHOWGOTOLINE "5g8"

L

>SHOWGOTOLINE "3g"

2

3
L

~283-

Report No. 1889 Bolt Beranek and Newman Inc.

«SHOWGOTOLINE !''25"

THERE IS NO LINE 25 (LOGO types out these
I WAS AT LINE 1§ IN SHOWGOTOLINE diagnostic comments.)

+<SHOWGOTOLINE '"1g"
(interrupt key pressed here after some time has gone
by with no printout)

I WAS AT LINE 1f IN SHOWGOTOLINE

] In the above example SHOWGOTOLINE "1g@" caused the computer to do

3 line 1@ over and over again until it was interrupted from the
teletype. A more standard example of the use of GO TO LINE is
as follows.

«<TO TWOTIMES
>1f¢ MAKE
NAME: "x"
THING: "1"
>2@ PRINT /X/
>30 MAKE
NAME: "x"
THING: SUM OF /X/ AND /X/
>4kg GO TO LINE 24
>END
TWOTIMES DEFINED

+~TWO TIMES
1
2
4
8
16
32
oL
(interrupted from teletype)
I WA5S AT LINE ZQ IN TWOTIMES

The other way of altering the numerical order of execution of the
instructions in a procedure 1s with the trio of commands TEST,
IF TRUE, and IF FALSE. TEST takes one input, which must be an
operation whose output must be either "TRUE" or "FALSE". (TEST

—-—
!
po==e

Report No. 1889 Bolt Beranek and Newman Inc.

e e s ST i 0 3
s

e

| can also take as input the literal words "TRUE" and "FALSE".)
] The effect of performing the command TEST expression is to mark

i a "truth flag" either true or false, depending on whether the
output of expression .s "TRUE" or "FALSE", respectively.

IF TRUE and IF FALSE are somewhat anomalous commands in that
their input can be any instruction, even a command. That !
instruction is executed if the truth flag matches the second
word of the IF --- command.

«TEST "TRUE" ;
>IF TRUE PRINT "OF COURSE"
OF COURSE
<IF FALSE PRINT "STRANGE"
(No printout occurs since the truth flag is
marked TRUE)

PR

«TO SHOWTEST /X/

>1@ TEST /X/

>2@% IF TRUE PRINT "AXLE"

>3 IF FALSE PRINT "CAKE"

>4 IF TRUE PRINT "SUBWAY"
>END

SHOWTEST DEFINED

+«SHOWTEST LAST OF "BLUE TRUE"
AXLE

SUBWAY

<SHOWTEST FIRST OF "FALSE LOVE"
CAKE

“

The IF commands can be used with GO TO LINE instructions to
provide conditional branching within a procedure. More i'roadly,
they can be used to alter the sequence of execution of procedures
within a program comprising many procedures (as in 3¢ IF TRUE
TARUM - 4g IF FALSE TARAY where the condition of the truth flag
determines whether the computer does the procedure TARUM or the
procedure TARAY).

g s

-285-

. T e e g

i

Report No. 1889 Bolt Beranek and Newman Inc.

TEST is made more useful by a collection of built-in operations
which output either "TRUE" or "FALSE". Operations which can have
only these two values are called predicates. Section 1.7
includes a list of the built-in predicates.

1.4 Defined Operations

It is possible to define new LOGO operations (i.e., procedures
which have an output) by means of the command OUTPUT.

<TC DOUBLE /X/

>1f OUTPUT WORD OF /X/ AND /X/
>END

DOUBLE DEFINED

<PRINT DOUBLE OF "CAT"

CATCAT

<PRINT DOUBLE OF DOUBLE OF '"GO"
GOGOGOGO

-+

An apparently equivalent procedure that doesn't have an output is

«TO DUB /X/

>18 PRINT WORD OF /X/ AND /X/
>END

DUB DEFINED

«DUB_"CAT™

CATCAT

-+

Notice that it wasn't necessary to say PRINT DUB OF "CAT" since
DUB contains a PRINT command. (The appearance and disappearance
of the OF is purely for euphony. The computer ignores it.) What
if an external PRINT 'is used?

<PRINT DUB OF "CAT"
CATCAT

DUB CAN'T BE USED AS AN INPUT. IT DOESN'T HAVE AN OUTPUT.

-+

O T T e o e A o e e T e P e e o T s T e ST PS4 FIE S S SR S SR S TR S S S O B

e eI

Report No. 1889 Bolt Beranek and Newman Inc.

LOGO complains. The problem is that the external PRINT didn't
get any input because DUB didn't output anything -- DUB 1is a

command, not an operation. The word "CATCAT" got printed anyway
because that happens before the computer gets to the end of DUB
and discovers that there is no output to transmit to the external
PRINT command.

The same thing happens, giving an obviously wrong answer, when

one writes

<DUB DUB "GO"
GOGO

DUB CAN'T BE USED AS AN INPUT., IT DOESN'T HAVE AN OUTPUT.

-+

Once procedures like DOUBLE or DUB are defined, they are
virtually indistinguishable in their use from the built-in

operations and commands. Thus, in the same way as with the

built-in ones, these too can be used to define other procedures.

<TO TRIPLE /X/

>1@ OUTPUT WORD OF /X/ AND DOUBLE OF /X/
>END

TRIPLE DEFINED

<PRINT TRIPLE OF "AB"

ABABAB

<PRINT TRIPLE OF DOUBLE OF "R"

RRP.RRR

-+

1.5 Recursion

In fact, since a defined procedure can be used just like a]
built-in procedure, it can even be used in its own definition.

Sometimes this gets nowhere -

-287-

e TR R TS 50 PR R

- LI -
" e e o T e R T T
r B e et
-4
£

Report No. 1889 Bolt Beranek and Newman Inc.

«<TO TYPEALOT
>1¢ TYPEALOT
>END
TYPEALOT DEFINED
>TYPEALOT
(after a long wait the interrupt key is hit)
I WAS AT LINE 18 IN TYPEALOT

-

It was silly to expect the computer to have been able to perform
this procedure (to type a lot?) with the instructions we gave.
If it didn't know what TYPEALOT meant before we defined it, it
certainly wouldn't now. But it clearly was doing something when

we said TYPEALOT since the teletype didn't type an « or an error

message.

When the computer receives the instruction TYPEALOT, it sees
that the instruction names a defined procedure. In order to
perform it, it has to look up the instructions contained in the
procedure definition. The title line shows that no inputs are
needed. Then the next line‘tells the computer to perform the
procedure TYPEALOT. To do this, the computer must look up the
procedure TYPEALOT and then perform the instructions contained
there. When it does this, it once more finds that it must look
up the procedure TYPEALOT, all over again. And again and again.
And so this goes on forever. (Actually, the LOGO system will
assume that there is an error after it has looked up this proce-

dure about 500 times, and will then cause the computer to stop.)

Of course, it would have been easy to design LOGO so that it
would remember what procedure it was doing and not allow this
situation to occur. It turns out, though, that we would have
deprived ourselves of a very valuable mathematical tool had we

done this.

-288-

e N P I N S S 1SS AT Y a4 e TRAfOTE Leow

= AT TR —

SRR

Report No. 1889 Bolt Beranek and Newman Inc.

WA Reiraiissudlibng 277 TI0Y

g The simplest use of the above effect (called recursion because
of the recurrence of the same definition) is to note that if

there had been a line preceding line 1@ in the procedure TYPEALOT,
this line would be done over and over again, every time the
procedure is looked up. Let us add a new line, say line 5.

<TO TYPEALOT

>5 PRINT "A LITTLE"
>1f TYPEALOT

>END

TYPEALOT DEFINED

+

<TYPEALOT
A LITTLE
A LITTLE
A LITTLE

(the interrupt key is hit to stop it)
I WAS AT LINE 5 IN TYPEALOT.

+

The following recursive procedure takes an input and has a
stopping rule.

gl g - I

<TO TRIANGLE /ANYWORD/ A
>Tf@ TEST EMPTYP OF /ANYWORD/ i
>2f IF TRUE STOP ;
>30 PRINT /ANYWORD/ :
>4 TRIANGLE BUTFIRST OF /ANYWORD/
>END

TRIANGLE DEFINED

| <

EMPTYP is a built-in predicate operation that outputs "TRUE" if i
its input is the empty word and outputs "FALSE" otherwise. STOP
is a built in command to stop this procedure, i.e., to skip the
rest of the instructions in the procedure and go directly to the
end.

Ranthy ¢ peTns iy
e eonie| '

-289-~

Report No. 1889 Bolt Beranek and Newman Inc.

«TRIANGLE "" (trying TRIANGLE with the empty word as the input)

“+ (nothing printed out but the program stopped)
<TRIANGLE "ABCDE"

! ABCDE
3 BCDE
CDE
DE
E

<«

In the second example, the definition of TRIANGLE was looked up
six times. The first five times the input was not the empty word,
so the STOP command was skipped. The computer then typed the

: input and looked up TRIANGLE again, but this time with a smaller

E input (the butfirst of the previous one). Finally, the input

was the empty word. For that input TRIANGLE skips lines 38 and

4g (so nothing is typed and the procedure is not looked up again)
and it stops.

. A well known example of this type of definition in arithmetic is
% the one for factorial:
] nl =1 if n=1, otherwise n!=n . (n-1)!

This can be transcribed directly to LOGO.

«<TO FACTORIAL /N/

>1g TEST 15 /N/ "1

>2f IF TRUE OUTPUT "1"

>3 IF FALSE OUTPUT PRODUCT OF /N/ AND FACTORIAL OF
DIFFERENCE OF /N/ AND "1"

>END
FACTORIAL DEFINED

<«

IS is a built-in predicate that outputs "TRUE" if its two inputs
are expressions for the same thing and "FALSE" otherwise. Line
38 is rather long but not too hard to read if one uses parentheses
PRODUCT OF (/N/) AND (FACTORIAL OF [DIFFERENCE OF /N/ AND "1"]).

-290-

Report No. 1889 Bolt Beranek and Newman Inc.

DIFFERENCE OF /N/ AND "1" is just n-1.

PRODUCT isn't a built-in operation so this FACTORIAL procedure
will not actually work until we also write a procedure PRODUCT.
Finally, 1t i1s not necessary to prefix the instruction in line
39 with the command IF FALSE, since the OUTPUT command incorpo-
rates the actions of the STOP command and, if 1line 2@ is
executed, the OUTPUT command there will skip to the end of the
procedure.

Here is a PRODUCT procedure based on Peano's definition of
multiplication.

<TO PRODUCT /X/ AND /Y/

>1g TEST IS /Xx/ '"1"

>2f IF TRUE OUTPUT /Y/

>30 IF FALSE OUTPUT SUM OF (/Y/) AND (PRODUCT OF
[DIFFERENCE OF /X/ AND "1'"] AND /Y/)D

>END

PRODUCT DEFINED

«PRINT PRODUCT "3'" AND ''12"
36 :
«PRINT FACTORIAL "s5" ?
120

1.6 Local and Global Names

In LOGO everything except the empty word is the name of something.
Until they are otherwise assigned, almost all LOGO things name
the empty word.

<PRINT /SOMETHING/
(The computer prints the empty word by skipping a line.)
«<PRINT /ANY OTHER THING/

-

<«PRINT /A/

-291-

[e e e e i]

Report No. 1889 Bolt Beranek and Newman Inc.

+<PRINT //

THE EMPTY WORD CANNOT BE A NAME.

«

The few exceptions, which don't initially name the empty word,
are built-in LOGO names for special things such as the teletype
bell, the blank character, etc. These are listed in Part 3.

Names may have their things changed in two ways. The most direct
way 1s by means of the instruction MAKE.

+MAKE
NAME: 'ALPHA"
THING: ~"BETTY"
+<PRINT /ALPHA/
BETTY

The text following the words NAME: and THING: may be anything
that has an output, that is a literal (like "ALPHA"), a name
(1ike /JKS/), or an operation with its inputs.

+<MAKE
NAME: /ALPHA/
THING: MSAPLE"
+PRINT /BETTY/
SAPLE
-

The name here is /ALPHA/, that is the LOGO thing "BETTY".

+MAKE
NAME: SENTENCE OF "DOT'" AND /ALPHA/
THING: BUTFIRST OF /BETTY/

<PRINT /DOT BETTY/

APLE

Here the name of SENTENCE OF "DOT" AND /ALPHA/ which is "DOT
BETTY" and the thing it names is BUTFIRST OF /BETTY/, "APLE"

g S Sk e ik s LS

Report No. 1889 Bolt Beranek and Newman Inc.

The instruction LIST ALL NAMES causes all names with non-empty
things to be listed.

«<LIST ALL NAMES
/ALPHA/ IS "BETTY"
/BETTY/ IS "SAPLE"

/DOT BETTY/ IS "APLEY
“

Just as the OF and AND in most instructions are optional, the
carriage returns after the command MAKE and before the label
THING are optional. The instruction in the form

+<MAKE (carriage return)
NAME: "BB" (carriage return)
THING: '"CABF" (carriage return)

can also be written with the two inputs on one line. Thus:
+<MAKE "BB" "CABF" (carriage return)

The computer doesn't type out NAME: and THING: in this form so
it is a little faster to type in.

The slow form is useful in emphasizing the relation between
NAME and THING during the early stages of teaching, however.

The other method of changing names is by specifying inputs in

procedures.

«TO SHOW /X/

>1¢ PRINT "NOW I AM GOING TO PRINT /X/"
>28 PRINT /X/

>END

>SHOW "“CATS"

NOW I AM GOING TO PRINT /X/

CATS
“

While the procedure SHOW is running, /X/ stands for "CATS".
When it stops, however, the old THING OF "X" is restored. Thus,

-293-

Report No, 1889 Bolt Beranek and Newman Inc.

<PRINT /X/
(the empty word)
+MAKE
NAME : "X

THING: "OLD THING"
+PRINT /X/
OLD THING
+SHOW "DOGS"
NOW I AM GOING TO PRINT /X/
DOGS
«PRINT /X/

OLD THING
<

A name which is in force only during the running time of some
procedure is called local to that procedure. A name that isn't
local to any procedure is called global. In the example above,
/X/ ("OLD THING") was global, while /X/ ("DOGS") was local to
SHOW. While a local /X/ is in force (i.e., while the procedure

for which it is local is running), all references to /X/ as a
name refer to the local name.

«TO WORRY /X/
>1f PRINT /X/
>38 PRINT THING OF "x"
>Lg MAKE

NAME: txn

THING: WORD OF "CAT" AND /X/
>50 PRINT /X/
>END
WORRY DEFINED
“PRINT /X/
OLD THING
+«WORRY "PIPE"
PIPE
PIPE
CATPIPE
“PRINT /X/
OLD THING
<

One reason for this somewhat complicated situation is that it
permits the student to forget about the choice of names inside

..2911..

St W e

Report No. 1889 Bolt Beranek and Newman Inc.

of procedures that he has written. For example, suppose the
student had written a procedure toc output the product of two
numbers and it had a title line TO PRODUCT /X/ AND /Y/. Then,
sometime later he wrote another program, called TO QUADRATIC /X/,
for computing (X+1)X+3X, which uses the procedure PRODUCT in its
definition.

+<TO_QUADRATIC /X/

>1g MAKE

NAME: M"FIRST TERM"

THING: PRODUCT OF (SUM OF /X/ AND "1") AND /X/
>29 MAKE

NAME: "SECOND TERM"

THING: PRODUCT OF '3'" AND /X/
>3 OUTPUT SUM OF /FIRST TERM/ AND /SECOND TERM/
>END
QUADRATIC DEFINED
<PRINT QUADRATIC OF "4
32

<

Notice that /X/ becomes "U" on entering QUADRATIC. In line 10
however PRODUCT OF "5" AND "4" is evaluated and so PRODUCT is
run. But that causes /X/ to become "5" while PRODUCT is running.
When PRODUCT is finished, however, we come back to QUADRATIC,

now at line 2@ and see another reference to /X/, meaning the /X/
of QUADRATIC ("4"). And, indeed, this is the way things work
because the /X/ in PRODUCT is local to that procedure and dis-
appears when PRODUCT is finished, leaving the /X/ of QUADRATIC

in force.

In this case the problem could have been gotten around simply by
using different input names for all procedures, a possible, if
awkward, maneuver. There is an important case where that won't
work, though, and that is in recursive procedures. There, since
the procedure being called is the same procedure as the one being

run, the input names are, of course, ildentical. Here is an

-295~

‘\
i
§

Report No. 1889 Bolt Beranek and Newman Inc.

example of a recursive procedure that doesn't work properly
because some global names are treated as though they were local.

+<TO REVERSE /X/

>1f TEST EMPTYP OF /X/
>2@ IF TRUE OUTPUT /EMPTY/
>3f MAKE

NAME: ""NEW BEGINNING"

THING: LAST OF /X/
>4 MAKE

NAME: YNEW END"

THING: REVERSE OF BUTLAST OF /X/
>50 OUTPUT WORD OF /NEW BEGINNING/ AND /NEW END/
>END
REVERSE DEFINED
<PRINT REVERSE OF "CAT"

TTT

“

The problem here is at line 3@ and at line 4g. /NEW BEGINNING/
isn't an input to REVERSE, so it isn't local. Therefore, 1its

thing will change on subsequent calls of REVERSE. The computer
does not save the things of global names in each round - it only
does that for local names. (The same is true for /NEW END/
though in this procedure that doesn't affect the result --
nothing that might change /NEW END/, such as a call to REVERSE,
happens after line 4¢ where /NEW END/ is set.) At line 4g
another REVERSE is called. 1In executing this REVERSE procedure,
/NEW BEGINNING/ will change. REVERSE procedures can, of course,
be written to avold this problem. But this REVERSE procedure
can easily be repaired by making /NEW BEGINNING/ local to it.
There is a command, LOCAL, to do this. LOCAL takes one input,
the name that is to be made local to the procedure.

«TO REVERSE /X/
>5 LOCAL "NEW BEGINNING"
>1f TEST EMPTYP OF /X/

(same as before)

>END
REVERSE DEFINED

<PRINT REVERSE OF "CAT"
TAC

*

-296-

Report No. 1889 Bolt Beranek and Newman Inc.

1.7 VList of Elementary Operations

1. FPFIRST (one input)
Its output is the first word of a sentence or the first

\

letter of a word.
FIRST OF "ABl2X!" is "AM
FIRST OF "MOX SED PEAX" is "MOX"

2. LAST (one input)
Its output is the last word of a sentence or the last letter
of a word; analogous to FIRST.

3. BUTFIRST (one input)

Its output is all but the first word of a sentence or all
but the first letter of a word.

BUTFIRST OF "ABl2X!" is "Bl2X!"

BUTFIRST OF "MOX SED PEAX" is "SED PEAX"
There is one tricky point here. BUTFIRST of a two-word sentence
is the last word of the sentence. It is a one-word sentence,

however, not a word. This can be observed in the expression
FIRST OF BUTFIRST OF "THE DOG" which has as its output the word
"DOG" since that is the first word of the one-word sentence "DOG"
that is the output of BUTFIRST OF "THE DOG". Continuing further,
the output of FIRST OF FIRST OF BUTFIRST OF "THE DOG" 1is the
word "D". In practice the output type (word or sentence) almost
always works out as the user expects.

4, BUTLAST (one input)

Analogous to BUTFIRST.
(It is worth noting that the output of BUTFIRST or BUTLAST 1s the
same type (word or sentence) as its input. On the other hand,
the output of FIRST or LAST is always a word.)

-297-

2 A R A

; Report No. 1889 Bolt Beranek and Newman Inc.

5. WORD (two inputs) I
Both inputs must be words. The output of the expression is

a new word made by concatenating the two inputs.
WORD OF "MO" AND "ZART" is "MOZART".

6. SENTENCE (two inputs)

Analogous to WORD. Here the inputs may be either words or
sentences and the value is a sentence.

SENTENCE OF "MO" AND "ZART" is "MO ZART"

SENTENCE OF "AB" AND "CD EF" is "AB CD EF"

SENTENCE OF "" AND "APPLE" is "APPLE"

In the last example the output is a one-word sentence again.

7. COUNT (one input)

The output of the expression is the number of letters in
the input if it is a word or the number of words-—if it is a
sentence. '

COUNT OF "ABC" is "3"

COUNT OF "THE CAT IN THE HAT" is "5"

COUNT OF "" is "g"

8. SUM (two inputs)

Both inputs must be numbers (i.e., words consisting only of
digits preceded by an optional + or - sign). The output of the
expression is the signed sum of the two inputs, prefixed by a -
sign if the sum 1s negative.

SUM OF "-5" AND "3" is "-2"

SUM OF "5"™ AND "-2" is "3"

-298-

Soere - w s s s N = R N T T e e e L e

. Report No. 1889 Bolt

9. DIFFERENCE (two inputs)
Analogous to SUM. The output is the
the second input from the first.
DIFFERENCE OF "3" AND "-5" ig "g8"

10. MAXIMUM (two inputs)
~ Analogous to SUM. The output is the
MAXIMUM OF 2 AND 4 is 4,

Integers do not need to be

11. MINIMUM (two inputs)
Analogous to SUM. The output is the
inputs.

12, RANDOM (no inputs)

Beranek and Newman Inc.

result of subtracting

larger of the two inputs.

gquoted in LOGO.

smaller of the two

The output is a digit between @ and 9 generated in a pseudo-

random manner. Larger pseudo-random numbers are generated by

concatenation. Thus,

WORD OF RANDOM AND RANDOM, yields a random number between

P2 and 99,

13. DATE (no inputs)

The output is the current date, a word representing month,

day, year. For example, ".0/31/1969",

14, TIME (no inputs)

The output is the current time, a sentence like "1:32 AM".

15, CLOCK (no inputs)

The ouftput is a number giving the number of seconds elapsed

since an internal clock was reset,.

Report No. 1889 Bolt Beranek and Newman Inc.

<RESET CLOCK
+ . (some work taking about half an hour)

<PRINT CLOCK
1836

<PRINT CLOCK
1833

“

16. REQUEST (no inputs)

When the computer evaluates the expression REQUEST, it
pauses to allow the user to type in something (often a requested
answer to a question) at the teletype. When the typing is
completed (as indicated when the user types a carriage return),
the output of the expression is the typed-in text. The following
procedure shows the use of REQUEST.

«TO _COPYCAT

>18 PRINT "TELL ME SOMETHING."
>20 PRINT REQUEST

>30 COPYCAT

COPYCAT DEFINED

«COPYCAT

TELL ME SOMETHING.

*WHO ARE _YOU?

WHO ARE YOU?

TELL ME SOMETHING.

*WHY SHOULD 1?7

WHY SROULD 172

TELL ME SOMETHING.

*ARE _YOU SOME KIND OF NUT
ARE YOU SOME KIND OF NUT

TELL ME SOMETHING.
*

The asterisk (¥) is typed by the REQUEST command to indicate to
the user that the computer is waiting for his typing.

-300~

R S = g - o TR

Report No. 1889 Bolt Beranek and Newman Inc.

17. ASK (one input)

This is similar to REQUEST except that there is an input -
the maximum number of seconds the computer should wait for type-in
to be completed. If time runs out, fhe output of the expression
is the empty word.

18. THING (one input)

The output of this expression is the thing named by the input.

THING OF "X" is exactly the same as /X/. The utility of THING
lies in expressions like THING OF /X/ (the analogous //X// is
illegal) and THING OF WORD OF /X/ AND /Y/.

The following are all predicates; i.e., they output TRUE or FALSE.

19. IS (two inputs)

This is the most general of the built-in predicates. Most
others could be built out of it. The output of the expression is
"TRUE" if the things expressed by the two inputs are identical,
letter for letter; otherwise its output is "FALSE".

IS "CAT" "CAT"™ is "TRUE"

IS #3 3 is "FALSE"

IS LAST OF @3 FIRST OF 3 is "TRUE"

20. EMPTYP (one input)

Its output is "TRUE" if the input is the empty word. It is
"FALSE" otherwise.

EMPTYP OF /X/ has the same effect as

IS /Xx/ """ or

IS /X/ /EMPTY/

-301-~

T

Report No. 1889 Bolt Beranek and Newman Inc.

21. ZEROP (one input)

The input must express a number, otherwise there is an error.

If the input is equal to @ (+¢, -@, @08, etc.), the output of the
expression is "TRUE". If the input is a non-zero number, the
output of the expression is "FALSE".

22, WORDP (one input)

WORDP outputs "TRUE" if its input is a word (not a sentence).

It outputs "FALSE" otherwise.

23. SENTENCEP (one input)

Like WORDP, except it outputs "TRUE" if the input is a
sentence. SENTENCEP and WORDP both output "TRUE" for the empty
word. For any other input their outputs are opposite.

24. NUMBERP (one input)

NUMBERP outputs "TRUE" if its input is a number in standard
form (that is, 123, +17, -@@8 give "TRUE", while A37, 7+8, ++3,
7.5 give "FALSE"). NUMBERP outputs "TRUE" for precisely those
things which are legal inputs for SUM, DIFFERENCE, ZEROP,
GREATERP, MAXIMUM, and MINIMUM.

25. GREATERP (two inputs)

The inputs must be numbers. GREATERP outputs "TRUE" if the
first input is larger than the second. It outputs "FALSE" if
the first i1s less than or equal to the second.

=302~

ST
o

N i
T T RRTATLL o T RTINS L&

Report No. 1889 Bolt Beranek and Newman Inc.

1.8 List of Elementary Commands

1. TO

This command indicates the beginning of a procedure defini-
tion. Immediately following the TO on the same instruction line
is the name of the procedure being defined (this must be a word,
not a sentence) and the names of its inputs, if it has any.

2. END (no inputs)
This indicates the completion of a procedure definition.

3. OUTPUT (one input)

This command causes a procedure to output the LOGO word or
sentence specified in its input. It can only be used within the
definition of a procedure. When the procedure is running and the
OUTPUT command is encountered, its input becomes the output of
the procedure. The procedure then stops and LOGO proceeds with
its program by running the instruction that called this
procedure.

4, STOP (no input)

Like the command OUTPUT, STOP causes a procedure to stop
(but without causing it to output). Again, as with OUTPUT, the
program then goes on with the instruction that invoked this
procedure.

5. GO TO LINE (one input)
Only used within the definition of a procedure. The input
must be the number of a line in that procedure (or an operation

whose output is such a number). When the procedure runs, execu-

tion of the GO TO LINE command causes the computer to execute

Report No. 1889 Bolt Beranek and Newman Inc.

its next instructions in numerical sequence beginning with the
line referred to in the command's input (instead of continuing
in its current numerical sequence).

6. LOCAL (one input)

Only used within a procedure definition. The command causes
its 1nput to become a local name as in the case with procedure
inputs. (See Section 1.6 for detailed discussion.,)

7. TEST (one input)

The input must either be one of the two words "TRUE" or
"FALSE" or an operation which outputs one of them. The result
of the command is to set the "truth flag" either to true or
false. The "truth flag" is automatically local to every proce-
dure and is initially set to true.

8. IF TRUE (one input)

Here the input may be a command or an operation. The status
of the truth flag is tested and the input is executed if the flag
is true.

9. IF FALSE (one input)
Like IF TRUE, except that its input is executed if the flag
is false.

10. GOODBYE (no inputs)
Disconnects the student from the computer and turns off his
teletype.

11. PRINT (one input)

Causes the input to be typed on the teletype followed by a

carriage return - line feed.

-304-

R PR BT < T v D

Report No. 1889 Bolt Beranek and Newman Inc.

12. TYPE (one input)
Like PRINT but without the final carriage return - line feed.
TYPE facilitates the typing of a series of printouts on a single

line.

13. MAKE (two inputs)
The first input becomes the name of the second input, as
discussed in detail in Section 1.6.

14, DO (one input)
The input must be a LOGO instruction. The DO command causes
this instruction to be executed.

15. RESET CLOCK (no inputs)

Causes a special LOGO one-second counter, CLOCK, to be reset
to zero. CLOCK is started off at zero when a user starts up LOGO.
It is incremented automatically.

16. WAIT (one input)
The input must be a number. The command causes the computer

to pause that number of seconds. Pauses of more than 24 hours

are illegal.

1 Report No. 1889 Bolt Beranek and Newman Inc.

2. The LOGO System

3 We distinguish the LOGO system from the LOGO language as follows.
§ The language consists of all those things (the operations,
commands, names, etc., and the rules governing their relations
and usage) necessary to express an executable LOGO program. The
system consists of those additional things - features and

facilities - that ald a user in his programming work at the

computer terminal. These have to do mainly with program manipu-

lation and debugging capabilities such as listing, editing,

TR S,
cioas it T T

storing, and retrieving.

2.1 Editing

i After a procedure has been defined and run, it often beccmes
necessary to make some changes in its definition. This can be
done using the command EDIT. To illustrate the use of EDIT,
consider the following definition of the procedure REVERSE.

«TO REVERSE /Y/

>18 TEST EMPTYP OF /X/

>2@ OUTPUT WORD OF LAST OF /X/ AND REVERS OF BUTLAST OF /X/ p
>END .?
REVERSE DEFINED
‘-

There are three errors in this definition. PFirst, a line is
needed between 1@ and 2@ telling what to do if /X/ 1s the empty '
word. That can be fixed by the following instructions.

+EDIT REVERSE ;
>15 IF TRUE OUTPUT /EMPTY/ :

-306-

e T R s £

Report No. 1889 Bolt Beranek and Newman Inc.

The flrst instruction, using the EDIT command, tells LOGO that
the definition of REVERSE will be modified. The second instruc-
tion defines a new line in the procedure. This line is inserted
as number 15 between lines 18 and 2@. (Here you see our reason
for generally numbering lines 18, 20, 38, ... instead of 1, 2,

3, ++.. = to leave room for subsequent insertions.)

The second error is a bug in the title line. There the input is
referred to as /Y/ but elsewhere in the procedure as /X/. The
title line is changed as follows.

>TITLE TO REVERSE /X/
>

Last, in line 2% REVERSE is spelled without the final E. We
can correct this by simply retyping the line.
>2@ OUTPUT WORD OF LAST OF /X/ AND REVERSE OF BUTLAST OF /X/

Now we have finished fixing the procedure, so we type END.

>END

REVERSE DEFINED

After LOGO acknowledges the redefinition of REVERSE, we can try
out the modified procedure.

<PRINT REVERSE OF "PITH"

HTIP
-+

There is a useful feature which could have reduced our work in
correcting line 2@. The command EDIT LINE (one input) tells LOGO
that the user wants to make changes in the line specified. In
order to avold retyping of correct words in the old line being
corrected, the computer recognizes the key N© (indicating the

joint striking of the control key and the letter N key on the

Sadrrnse SN

25430 andaeielp i Snnl o 5 e S S AR

3 S ol AT D DN S D

Report No. 1889 Bolt Beranek and Newman Inc.

teletype) as representing "the next word in the old line". Each
time N® is struck, it causes the next word of the old line to be

typed. Thus, in our example (the user's typing is underscored):

>EDIT LINE 2§ _
>2f N_OUTPUT N WORD N"OF N'LAST N"OF N”/X/ NCAND NUREVERS \E
RCOF BUTLAST OF 7X/

>

(Since N® and R® don't type out anything on the teletype, the
above line looks readable.) The RC (standing for the rest or
remainder of the old line) indicates to LOGO that it 1s to pro-
vide enough Nc's to finish the line. The backslash (\) before
the E is used to erase the space the computer typed after REVERS.
(In general, the backslash character \ erases the preceding
character, \\ erases the two preceding characters, and so on.)

W® erases the preceding word (back to the first space) and types
a \ for every character it erases. Backslash and W® work during
all typing, not just during editing.

2.2 Abbreviating

To reduce the user's typing, the computer recognizes short forms

for most commands. These are called abbreviations.

<P S OF "CAT" AND '"DOG"

CAT DOG

P is the abbreviation for PRINT and S for SENTENCE. The long
forms are substituted internally for the abbreviations as soon
as the abbreviations are typed in. Thus, 1f you were to type in
a procedure definition using abbreviations and then list it, the
computer would type it back to you in expanded form.

-308-

Report No. 1889 Rolt Beranek and Newman Inc.

Also, text included between quotation marks or slashes is not
interpreted as an abbreviation. Thus,

«p "p P P S"
PPPS

-+

The student can make his own abbreviations with the command
ABBREVIATE (two inputs). The first input can be any LOGO thing.
The second must be a word which will become the abbreviation.

+<ABBREVIATE "PRINT SUM' 'yt
<4 MU ngn
8

+

2.3 Listing and Erasing

The command LIST causes the computer to type out, in standard
format, the entity or entitiles specified by its input. The

command has several forms.

1. LIST (one input)

The input here must be a procedure name. The computer types the
definition of the procedure.

<LIST REVERSE

TO REVERSE /X/

1§ TEST EMPTYP /X/

2 IF TRUE OUTPUT /EMPTY/

3¢ OUTPUT WORD OF LAST OF /X/ AND REVERSE OF BUTLAST OF /X/
END

’

-309~-

A

Report No. 1889 Bolt Beranek and Newman Inc.

2. LIST ALL PROCEDURES

The computer lists all the procedure definitions currently in
the student's workspace (see Section 2.5).

3. LIST CONTENTS

Lists the title line of every defined procedure currently in the .
student's workspace.

<LIST CONTENTS

TO REVERSE /X/

TO PRODUCT /X/ AND /Y/ :
TO FACTORIAL /N/ 1

“

4. LIST ALL NAMES

All names whose things are not the empty word are listed.
<LIST ALL NAMES

/X/ 1S '"OLD THING"

/CAT/ 1S '"HOTDOG"
/N/ IS "15"

“

5. LIST ALL ABBREVIATIONS

All student-defined abbreviations are listed.

St b e

«<LIST ALL ABBREVIATIONS

R: REVERSE]
PR: PRODUCT 1
1 FACTORIAL .
+: PRINT SUM]
-

-310-

Report No. 1889 Bolt Beranek and Newman Inc.

6. LIST ALL (

All procedures, all names, and all abbreviations are listed.

The following two list instructions have meaning only while a

procedure is being defined or edited.

7. LIST TITLE
The title line of the procedure is listed.
8., LIST LINE (one input)

The input must be a number. That line is listed.

SRS .
JEERY: Eio o

The command ERASE provides a means of removing material from the
computer's memory. The forms of the ERASE command are similar
to those for LIST.

1. ERASE (one input) i
The input must be a procedure name, as with LIST. That 1
procedure definition is erased. | ?
i
2. ERASE ALL PROCEDURES I
i3
1
All procedure definitions currently in the student's workspace %
are erased. yf

-311- '

P =L e e ettt

Report No. 1889 Bolt Beranek and Newman Inc;

3. ERASE ALL NAMES

All names are given empty things.
4. ERASE ALL ABBREVIATIONS

All abbreviations are forgotten.
5. ERASE ABBREVIATION (one input)

Just that specific abbreviation is erased.

<ERASE ABBREVIATION "4"

<

+ would no longer be an abbreviation for PRINT SUM.

6. ERASE ALL

The computer is restored to its initial state, as it was when :
the student first entered.]

The following instruction is used only while defining or editing
a procedure.

7. ERASE LINE (one input)

The input must be a number. The indicated line is deleted from
the procedure definition.

Two special commands indirectly involve listing. The command
BURY makes a procedure unlistable. This command can only be
used by a teacher (the computer recognizes a teacher by his

-312-

Report No. 1889 Bolt Beranek and Newman Inc.

password). It has proved useful in presenting assignments. The
teacher writes a procedure, buries 1t, and then asks the students
to write a procedure that has the same effect as the buried one.
DIGUP (also for use of the teacher only) undoes the effect of
BURY.

2.4 Debugging

The LOGO system has built-in aids to help students find the bugs
in their programs. A bug will have one of two effects. It may
cause the computer to try to execute an illegal instruction or
it may direct the execution of instructions that are legal but
which produce a wrong answer or no answer at all, e.g., i1t may

put the computer in a loop that never ends.

In the first case, the computer immediately stops doing instruc-
tions and types out a diagnostic message describing the error
and telling where it occurred. (Some typical diagnostic messages
are listed at the end of this section.) Here is an example of

the first kind of bug. Let us define a procedure GREET.

«TO GREET /X/

>1@ PRINT SENTENCE OF "HELLO,'" AND /X/
>2@ PRONT '"HOW ARE YOU?"

>3@ PRINT "SEE YOU LATER"

>END

GREET DEFINED

Now let's run it.

+GREET "JOHN"
HELLO, JOHN

PRONT NEEDS A MEANING.
I WAS AT LINE 2@ IN GREET

-313~-

Report No. 1889 Bolt Beranek and Newman Inc.

There was a bug. The diagnostic message tells us what 1s wrong
and where the error was found. So we fix the bug.

«EDIT GREET

>2@ PRINT "“"HOW ARE You'"
>END

GREET DEFINED

We try again.

«GREET '"JOHN"
HELLO, JOHN
HOW ARE YOU?
SEE YOU LATER

“

This time GREET works.

When the procedure GREET was being defined, the computer didn't
object when line 2@ was typed in, nor should it have. It 1is
possible that a procedure PRONT might have been written liater,
after GREET was defined. And, i1f the student had defined PRONT,
before running GREET, for example -

«TO PRONT /X/
>1g PRINT /X/
>END

PRONT DEFINED

“

GREET would have worked perfectly well.

In the above example, the computer's diagnostic message pointed
to the source of the error and thus was directly helpful. Often,
however, we get situations where the illegal instruction isn't
the cause of the error at all. For example, in the course of
running a procedure the computer may Ssay

DIFFERENCE OF "AB" AND "1"? INPUTS MUST BE NUMBERS.
I WAS AT LINE 38 OF PRODUCT.

-314-

ewieb RESSELY. oo T

To reduce the editing work required to put in and subsequently

Report No. 1889 Bolt Beranek and Newman Inc.

And when we look at PRODUCT we see something like

38 OUTPUT SUM OF /X/ AND PRODUCT OF /X/ AND DIFFERENCE OF
/Y/ AND "1M

The error is that somehow /Y/ must have become "AB" instead of a
number. But, the location of the error isn't line 34. /Y/ is

being set up incorrectly somewhere else. This type of error

then is really like the second kind mentioned above. The
computer gets past it without performing an illegal instruction
but it produces a result which shows up as faulty later when the
computer is performing another instruction, perhaps in a differ-
ent procedure. In this case the diagnostic is less helpful and
more work must be done to find the error.

The most powerful method for pinpointing errors of this sort is

to plant, at strategic spots in the procedures, lines of the form
PRINT SENTENCE OF "AT LINE --- IN PROCEDURE --- /Y/ IS" AND /Y/
with the blanks filled in appropriately. Now, when the procedures
run, they will leave a trace showing the things of "Y" and how
they change. Using this trace, it is easy to see where /Y/ goes
wrong. After the bug is fixed, the tracing lines can be erased.

remove tracing lines, the LOGO system has the built-in facility
of tracing title lines and output lines. The operation of the

TRACE command is illustrated in the following example, another
REVERSE procedure.

«TO REVERSE /X/ AND /Y/ (/Y¥/ should start as the empty word)
>1@ TEST EMPTYP /X/
>2@ IF TRUE OUTPUT /Y/
>3F OUTPUT REVERSE OF BUTLAST OF /X/ AND WORD OF /Y/ AND
LAST OF /X/
>END
REVERSE DEFINED

This is a correct procedure.

Report No. 1889 Bolt Beranek and Newman Inc.

<PRINT REVERSE OF '"CAT" AND "M
TAC

This 1s how we put a TRACE on it.

+<TRACE REVERSE

This is what happens when we run a traced procedure.

<PRINT REVERSE OF "CAT' AND "M
REVERSE OF '"'CAT'" AND "M
REVERSE OF "CA"™ AND "T
REVERSE OF "C'" AND "TA"
REVERSE OF "" AND "TAC"
REVERSE OUTPUTS "TAC"
REVERSE OUTPUTS "TAC"
REVERSE OUTPUTS "TAC"
REVERSE OUTPUTS "TAC"
TAC

To remove the TRACE on REVERSE we simply write

+<ERASE TRACE REVERSE
“

The LOGO commands TRACE ALL PROCEDURES and ERASE ALL TRACES are
useful with programs involving several procedures, and particu-
larly with recursively chained procedures.

Diagnostic Messages

There are about 10@ diagnostic messages. The following are some
typical ones.

THAT ISN'T YOUR FILE.

MEANINGLESS CHARACTER.

IF WHAT? (IF TRUE OR IF FALSE ONLY).
YOU NEED / MARKS AROUND EACH INPUT.

THE TITLE MUST BEGIN WITH TO.

END WHAT? YOU'RE NOT DEFINING ANYTHING.
GO WHERE?
LIST WHAT?

Report No. 1889 Bolt Beranek and Newman Inc.

ERASE WHAT?
] YOU CAN'T TRACE BUILT-IN OPERATIONS.
: DON'T USE THE EMPTY WORD FOR A NAME.
THE INPUTS TO WORD MAY NOT BE SENTENCES.
/ ILLEGAL COMMAND.
g THE INPUT TO TEST MUST BE A PREDICATE.
YOU FORGOT THE LINE NUMBER.

. The following four comments mean that the number of inputs found
on the line and the number needed didn't match. The exact comment
chosen depends on the particular parsing error.

2 SOMETHING EXTRA

; SOMETHING MISSING

; SOMETHING EXTRA IN A NAME (with the MAKE command)
SOMETHING EXTRA IN A THING " " " "

A3

In the following diagnostics, the underscored words are filled
in appropriately by LOGO when the error occurs. The words given
here are typical examples.

1 MATCHING "? (or / or (or J)
{ PRONT NEEDS A MEANING.
] TRUMP ISN'T COMPLETELY DEFINED. (END command not yet given.)
THERE IS NO LINE 3f.
E SUM OF "A™ AND "5'"? INPUTS MUST BE NUMBERS.
(Similar comments for DIFFERENCE, MAXIMUM, MINIMUM, GREATERP,
7ZEROP, ASK, and WAIT)
TEST IS USED BY LOGO. CHOOSE ANOTHER PROCEDURE NAME.
(The student can't define a procedure called TEST)
OF ISN'T A PROCEDURE.
THERE ISN'T ANY FILE GRANT
ANAGRAM ISN'T IN THAT FILE.
REVERSE ISN'T TRACED.
REVERSE IS ALREADY TRACED.
REVERSE IS ALREADY DEFINED.
; YOU'RE ALREADY DEFINING REVERSE.
YOU'RE ALREADY EDITING REVERSE.
REVERSE STOPPED WITHOUT AN OUTPUT. IT CAN'T BE USED AS AN INPUT.

The comment I AM IN TROUBLE. TELL YOUR TEACHER indicates a
computer failure.

-317-

Report No. 1889 Bolt Beranek and Newman Inc.

2.5 Filing

An important aspect of writing programs in LOGO is building com-
plex programs from simpler ones. For example, assume a MULTIPLY
procedure has been written. Sometime later the student may write
a FACTORIAL procedure using the MULTIPLY. Then, perhaps, a
PROBABILITY procedure using FACTORIAL and other procedures.
Finally, PROBABILITY might end up in some game-playing strategy

program.

LOGO contains a facility for filing away procedure definitions.
The basic unit of a LOGO file is an entry. This is like a single
file folder and may contain procedure definitions, names, and
abbreviations. In a well organized file, each entry contains a
related group of procedures, names, and abbreviations (for
example, those that are used for playing NIM, or those used in

solving linear equations).

An entry has a name which consists of two words. The first word

is the file name and is common to all the entries in a file (it

1s often the name of the student who owns the file). The second
word usually describes the entry and distinguishes it from other %
entries in the same file. Examples of names are JIM EQUATIONS,
NANCY RANDOMSENT, SCOTT NIM.

An entry is created by the command SAVE. The entry contains
everything that would be listed by LIST ALL, that is, all proce-
dures, all names, and all abbreviations made by the student
during this sesslon. This material, comprising everjthing in

his actlve area of the computer's memory, is called the student's
workspace.

_318-

Report No. 1889 Bolt Beranek and Newman Inc.

“SAVE GRANT ARITH (GENERAL ARITHMETIC FUNCTION)

<«

In the example above the entry GRANT ARITH would be created (if
GRANT ARITH already existed, the old entry would be erased and
replaced by the new one). The entire workspace would be copied
into the entry. There would then be two copies of the workspace,
one in the entry and one still actively in the computer where

the student is using it. The active copy is erased when the
student gives the command GOODBYE.

The parenthesized text "GENERAL ARITHMETIC FUNCTION" is saved
with the entry as a comment.

+<LIST FILE GRANT

ARITH (GENERAL ARITHMETIC FUNCTION 9:44 AM 10/1/1969)
REVERSE (WRITES ITS OWN PROCEDURES 3:37 PM 9/8/1969)
BINTEST (ADDTEST AND MULTEST IN BINARY 2:37 PM 8/2L/1969)

-
Also in the comment is the time and date that the entry was saved.
Indeed, if no comment is given, as in the following case,

+SAVE GRANT SQUARE-ROOT
<~

a comment containing only the time and date of saving is con-
structed and saved with the entry.

To retrieve an entry from a file, the command GET is used.

+<GET GRANT ARITH
(GENERAL ARITHMETIC FUNCTION 9:44 AM 19/1/1969)

<~

The associated entry comment is typed out and the contents are
copied into, and become a part of, the student's active area
(workspace). It is important to note that the entry itself is
not removed from the file - what is placed in the student's work-
space 1s merely a copy. Thus, any number of students can get a
single entry at the same time.

=319~

Report No. 1889 Bolt Beranek and Newman Inc.

To remove an entry from a file, the command ERASE ENTRY is used:
+ERASE ENTRY GRANT ARITH

<

When all entries in a file are erased, the file itself is auto-
matically eliminated.

A file is created by creating its first entry. The file is owned
by the student who created it. Only he may SAVE or ERASE entries
in that file. Anyone can GET or LIST from it, however, unless
the owner makes some entries private.

The command LOCK is used to make an entry private. A student can
only LOCK entries in his own files. Thus,

+LOCK GRANT REVERSE
-

For anyone except the owner of the file GRANT, it will now be as
if the entry GRANT REVERSE didn't exist. The command UNLOCK
removes the lock on an entry.

+UNLOCK GRANT REVERSE

<

There are several forms of the LIST command that use files.

(Underscores indicate places for appropriate names.)

LIST ALL FILES Types each file name.

LIST FILE Types the name and comment for each entry in
the specified file (as in the example above).

LIST ENTRY Types the comment, all the procedures,
all the names, and all the abbreviations in the entry. The
format is like that of LIST ALL,

LIST COMMENT Types the comment for that entry.

-320-

|
Report No. 1889 Bolt Beranek and Newman Inc. 1
LIST PROCEDURES Types the definitions of all %
procedures 1in the entry. é

;

LIST NAMES Types all names in the entry (and their]
things). §

LIST ABBREVIATIONS Types all abbreviations in the ?
entry. i

LIST CONTENTS Types only the title lines of all %
procedures in the entry. i

o b P e e o
ey -

k:
&
£
]
i
]
1
B
q

-321- %

e ST T L T

Report No. 1839 Bolt Beranek and Newman Inc.

3. Summary of LOGO Operations, Commands, Special Names, and
Abbreviations

OPERATIONS
FIRST (1 INPUT) FIRST LETTER GF WORD OR FIRST WORD OF SENTENCE
LAST (1 INPUT) LAST LETTER OF WORD OR LAST WORD OF SENTENCE
BUTFIRST (1 INPUT)> ALL BUT THE FIRST
BUTLAST (1 INPUT) ALL BUT THE LAST
WORD (2 INPUTS) CONCATENATES THE TWO INPUTS INTO A WORD
SENTENCE (2 INPUTS) CONCATENATES THE TWO INPUTS WITH A SPACE

BETWEEN THEM
COUNT (1 INPUT) THE NUMBER OF LETTERS IN A WORD OR WORDS
IN A SENTENCE
Sum . (2 INPUTS) THE ALGEBRAIC SUM OF TWO INTEGERS
DIFFERENCE (2 INFUTS) THE ALGEBRAIC DIFFERENCE OF TWO INTEGERS
MAXIMUM (2 INPUTS) THE LARGER OF TWO INTEGERS '
MINIMUM (2 INPUTS) THKE SMALLER OF TWO INTEGERS
EMPTYP (1 INPUT) TRUE OR FALSE AS INPUT IS /EMPTY/ OR NOT
ZEROP (1 INPUT) TRUE OR FALSE AS INPUT IS @ OR NOT
WORDP (1 INPUT) TRUE OR FALSE AS INPUT IS WORD OR NOT
SENTENCEP (1 INPUT) TRUE OR FALSE AS INPUT IS SENTENCE OR NOT
NUMBERP (1 INPUT) TRUE OR FALSE AS INPUT IS NUMBER OR NOT
BEFOREP (2 INPUTS) TRUE OR FALSE AS FIRST INPUT IS BEFORE SECOND
OR NOT (BOTH INPUTS MUST BE TIME AND DATES OR
JUST TIMES OR JUST DATES) ‘

GREATERP (2 INPUTS) TRUE OR FALSE AS FIRST INPUT IS LARGER
THAN SECOND OR NOT (BOTH INPUTS MUST BE INTEGERS)
IS (2 INPUTS) TRUE OR FALSE AS FIRST INPUT IS THE SAME AS

SECOND OR NOT
THING (1 INPUT) THAT THING THAT THE INPUT IS THE NAME OF
REQUEST (NO INPUT) LITERAL TYPEIN FROM THE TELETYPE
ASK (1 INPUT) LITERAL TYPEIN FROM THE TELETYPE IF COMPLETED
IN INPUT NUMBER OF SECONDS. OTHERWISE /EMPTY/
RANDOM (NO INPUTS) A RANDOM DIGIT

DATE (NO INPUTS) THE CURRENT DATE

TIME (NO INPUTS) THE CURRENT TIME

CLOCK (NO INPUTS) A ONE SECOND CLOCK

BOTH (2 INPUTS) LOGICAL AND OF TWO PREDICATES

EITHER ¢2 INPUTS) INCLUSIVE OR OF TwO PREDICATES
ENTRIES (1 INPUT) INPUT IS A FILE NAME. OUTPUT IS SENTENCE OF SECOND
NAMES OF THE ENTRIES IN THAT FILE

DATE-SAVED (1 INPUT) INPUT IS ENTRY NAME. OUTPUT IS TIME
AND DATE ENTRY WAS SAVED

DATE-GOTTEN (1 INPUT) LIKE DATE=-SAVED
OWNER (1 INPUT) INPUT IS A FILE NAME. OUTPUT IS NAME OF OWNER
INITIALS o (1 INPUT) INPUT IS ENTRY NAME. OUTPUT IS INITIALS
OF SAVER
SIZE (1 INPUT) INPUT IS ENTRY NAME. OUTPUT IS NUMBER
DIRECTLY RELATED TO SIZE OF ENTRY ON THE DRUM

~-322~

[
oy iR

o

Peairentaay .

b s

. =] e . ?
L

e venay
S o L

o] s N
L= S

by

p
]
i
E-

;L U S ettt

TO

1 TITLE
E WAIT
IF
EDIT
END
TRACE
3 ERASE

LIST

GOODBYE
¢ PRINT

: TYPE

f OUTPUT

MAKE
STOP

Report No. 1889 Bolt Beranek and Newman Inc.

COMMANDS

DEFINE PROCEDURE

TO CHANGE TITLE LINE OF A PROCEDURE WHILE IN EDIT MOCE
TAKES ONE INPUT AND WAITS THAT MANY SECONDS

FOLLOWED BY TRUE OR FALSE

"TO CHANGE A PROCEDURE

TO END A PROCEDURE DEFINITION

CAUSES PRINTOUT WHILE A PROCEDURE RUNS
ERASES MANY DIFFERENT THINGS

1. ERASE ENTRY (ENTRY NAME)

2. ERASE (PROCEDURE NANME)

3. ERASE TRACE (PROCEDURE NAME)

4. ERASE ALL TRACES

5. ERASE ALL NAMES

6. ERASE ABBREVIATION EXPRESSION

7. ERASE ALL ABBREVIATIONS

8. ERASE ALL PROCEDURES

9. ERASE ALL

10. ERASE LINE (NUMBER) (ONLY IN EDIT MODE)
LIST MANY THINGS :

1« LIST (PROCEDURE NAME)

2« LIST ALL PROCEDURES

3. LIST CONTENTS

4. LIST CONTENTS (ENTRY NAME)

Se LIST ALL NAMES

6« LIST NAMES C(ENTRY NAME)

7« LIST ALL ABBREVIATIONS

8« LIST ABBREVIATIONS (ENTRY NAME)

9. LIST ALL

16 LIST ALL FILES

11« LIST FILE (FILE NAME)

12 LIST ENTRY (ENTRY NAME)

13. LIST TITLE (ONLY IN EDIT MODE)

14 LIST LINE (NUMBER) (ONLY IN EDIT MODE}
HALTS LOGO

TYPES ITS INPUT AND THEN CARRIAGE RETURNS
LIKE PRINT BUT WITHOUT CARRIAGE RETURN
PROCEDURE ENDS AND HAS VALUE OF EXPRESSION FOLLOWING
THE COMMAND

SETS UP NAMES

PROCEDURE ENDS AND HAS NO VALUE

-323-

T e e e

;\,‘-——4:;;'_:::;-__';;;::“.,,.) G AT e e L

Report No. 1889 Bolt Beranek and Newman Inc.

COMMANDS (continued)

DO EXECUTES ITS INPUT AS A LOGO COMMAND
LOCAL DECLARES FOLLOWING NAMES AS BELONGING TO PROCEDURE IN WHICH]
THE COMMAND 1S |
SAVE SETS UP AN ENTRY]
GET READS IN AN ENTRY %
GO GO TO LINE . .
RESET RESET CLOCK SETS CLOCK TG ZERO]
ABBREVIATE SETS UP ABBREVIATICNS 1
TEST SETS TRUTH FLAG j
PASSWORD RESETS PASSWORD AND FILE DIRECTORY :

LOCK MAKES AN ENTRY PRIVATE §
UNLOCK UNDOES LOCK i
HOARD MAKES AN ENTRY NON-RESAVEABLE (WHEEL ONLY) %
SHARE ~ UNDOES HOARD (WHEEL ONLY)

BURY MAKES A PROCEDURE UNLISTABLE (WHEEL ONLY)

DIGUP UNDOES BURY (WHEEL ONLY)

NAMES

/EMPTY/ THE EMPTY THING

/CONTENTS/ A SENTENCE OF DEFINED PROCEDURE NAMES

/LINE FEED/ A LINE FEED WITHOUT CARRIAGE RETURN

/CARRIAGE RETURN/ A CARRIAGE RETURN WITHOUT LINE FEED

/FILES/ A SENTENCE OF FILE NAMES

/FORM FEED/ ON SOME TELETYPES MOVES PAPER TO A NEW PAGE -
WHEN TYPED y

/BLANK/ A BLANK SPACE

/BELL/ A BELL

/QUOTE/ A QUOTE MARK

/SKIP/ A NEW LINE (CARRIAGE RETURN AND LINE FEED)

-324-

' -
a1
¥ t

f
-

| - SO |

Report No. 1889

ABB:
ABBS:
ABT:
BFs

BL¢

BP:

DIFF:
D-G:
D=S5:
EDL ¢
EDT:
EE:
EP:
ER:
ERL
GB:
GP:
GTL:
LC:
LE:
LLS
MAX
MIN
NP
PRS:
KQs
OP:

SP:

ViPs
ZP:
IFT
I FF
RTs
GQ:s
SQs
Wwa:
NG
El:

ABBREVIATION
ABBREVIATIONS
ABBREVIATE
BUTFIRST
BUTLAST

BEF OREP
COUNT
DIFFERENCE
DATE-GOTTEN
DATE-SAVED
EDIT LINE
EDIT TITLE
ERASE ENTRY
EMPTYP
ERASE

ERASE LINE
FIRST
GOODBYE
GREATERP

GO TO LINE
LAST

LIST CONTENTS
LIST ENTRY
LIST LINE
MAXIMUM
MINIMUM
NUMBERP
PRINT
PROCEDURES
REQUEST
OUTPUT
SENTENCE
SENTENCEP
TEST

WORD

WORDP

ZERDP

IF TRUE

IF FALSE
OUTPUT
GREATERP
SENTENCEP
WORDP
NUMBERP
EITHEK

BOTH

Bolt Beranek and Newman Inc.

ABBREVIATIONS

~325-~

